Government College of Engineering, Aurangabad (An Autonomous Institute of Government of Maharashtra) Station Road, Osmanpura, Aurangabad – 431005 (M.S.) Phone – (0240) 2366101, 2366111, Fax (0240) 2332835

Curriculum for First Year B. Tech. in Mechanical Engineering with One Multidisciplinary Minor Degree (NEP Compliant)

(With Effect from Academic Year 2023-24)

Vision of the Institute

• In pursuit of global competitiveness, the institute is committed to excel in engineering education and research with concern for environment and society.

Mission of the Institute

- Provide conducive environment for academic excellence in engineering education.
- Enhance research and development along with promotion to sponsored projects and industrial consultancy.
- Foster development of students by creating awareness for needs of society, sustainable development and human values.

Vision of the Mechanical Engineering Department

• To develop excellence in Mechanical Engineering.

Mission of the Mechanical Engineering Department

- Impart sound knowledge and technical skills through conducive ambiance with right attitude towards society and environment.
- Enhance research facilities, collaboration with industry and provide testing and consultancy services.
- Nurture entrepreneurial qualities, creativity and provide motivation for higher education.
- Inculcate self-learning, team work and adoptability to change.

Program Outcomes

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes

- 1. To identify mechanical engineering related real life issues /problems in industries society and provide feasible solution.
- 2. To plan and manage the activities in the small, medium and large enterprise as a part of team or as individual.

GENERAL COURSE STRUCTURE & THEME

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
1 Hr. Practical (P) per week	0.5 Credit
2 Hours Practical (P) per week	1 Credit

B. Range of Credits: (B.E./B.Tech. or Equivalent) in Engg. /Tech. with Multidisciplinary Minor: In the light of the fact that a typical NEP Compliant Model Four-year Under Graduate degree program in Engineering has about 176 credits, the total number of credits proposed for the four-year B.Tech./B.E. in Mechanical Engineering with one Multidisciplinary minor degree is kept as 176.

Son/~~

Dean Academics

Head of the Mechanical Engineering Department

Approved in XXVIth Academic Council Dated: 27th April 2023

C. Semester wise Credit Distribution Structure for Four Year UG Program in Mechanical Engineering with One Multidisciplinary Minor:

Semester		Ι	II	ĪĪI	IV	V	VI	V	VI	Total
								Π	II	Credi
										ts
Basic Science Course	BSC/ESC	08	08	-	-	-	-	-	-	16
Engineering Science		07	07	-	-	-	-	-	-	14
Course										
Programme Core Course	Program	-	02	10	08	12	12	12	-	56
(PCC)	Courses									
Programme Elective		-	-	-	-	04	06	08	02	20
Course (PEC)										
Multidisciplinary Minor	Multidisci	-	-	04	04	03	03	-	-	14
(MD M)	plinary									
Open Elective (OE) Other	Courses	-	-	02	03	03	-	-	-	08
than a particular program										
Vocational and Skill	Skill	02	02	-	02	-	02	-	-	08
Enhancement Course	Courses									
(VSEC)										
Ability Enhancement	Humanitie	02	-	-	02	-	-	-	-	04
Course (AEC -01, AEC-	S									
02)	Social									
Entrepreneurship/Econom	Science	-	-	02	02	-	-	-	-	04
ics/ Management Courses	and									
Indian Knowledge	nt	-	02	-	-	-	-	-	-	02
System (IKS)	(HSSM)									
Value Education Course		-	-	02	02	-	-	-	-	04
(VEC)										
Research Methodology	Experienti	-	-	-	-	-	-	-	04	04
Comm. Engg. Project	al •	-	-	02	-	-	-	-	-	02
(CEP)/Field Project (FP)	Learning									
Project	Courses	-	-	-	-	-	-	04	•	04
Internship/ OJT		-	-	-	-	-	-	-	12	12
Co-curricular Courses	Liberal	02	02	-	-	-	-	-	-	04
(CC)	Learning									
	Courses									
Total Credits (Major)		21	23	22	23	22	23	24	18	176

Students can opt for any of the following as per the rules and regulations given by institute:

1. B. Tech with one Multidisciplinary Minor = Total 176 Credits

2. B. Tech with one Multidisciplinary Minor and One Honor = Total 194 Credits

3. B. Tech with one Multidisciplinary Minor and Honor by Research = Total 194 Credits

4. B. Tech with two Multidisciplinary Minors = Total 190 Credits

Son

Bhil Dean Academics

Head of the Mechanical Engineering Department

Approved in XXVIth Academic Council Dated: 27th April 2023

Category-wise Courses D.

S.	Catego	Course Title	Somestor	H	ours per w	eek	Total
No	ry	Course Thie	Semester	Lecture	Tutorial	Practical	Credits
1	BSC	Mathematics – I	Ι	3	1	0	04
2	BSC	Optics, Acoustics and Engineering materials	Ι	3	0	0	03
3	BSC	Lab Physics	Ι	0	0	2	01
4	BSC	Mathematics – II	II	3	1	0	04
5	BSC	Battery Science, Lubricants and Green Chemistry	Π	3	0	0	03
6	BSC	Lab Chemistry	II	0	0	2	01
		Το	tal Credits				16

2. ENGINEERING SCIENCE COURSE [ESC]

G	Catago		Hours per week		Hours per week		eek	Total
S. No	ry	Course Title	Semester	Lecture	Tutorial	Practica l	Credits	
1	ESC	Engineering Graphics	Ι	2	0	0	02	
2	ESC	Lab Engineering Graphics	Ι	0	0	4	02	
3	ESC	Basics of Electrical and Electronics Engineering	Ι	3	0	0	03	
4	ESC	Engineering Mechanics	II	3	0	0	03	
5	ESC	Lab Engineering Mechanics	II	0	0	2	01	
6	ESC	Design Thinking	II	2	0	0	02	
7	ESC	Lab Design Thinking	II	0	0	2	01	
		Tot	al Credits				14	

Son/une

BArel

Head of the Mechanical Engineering Department

S.	Catagory Course Title Somester		Somostor	H	Total		
No	Category	Course Thie	Semester	Lecture	Tutorial	Practical	Credits
1	VSEC	Engineering Exploration	Ι	0	0	4	02
2	VSEC	Workshop Practice-I	II	0	0	4	02
3	VSEC	Workshop Practices-II	IV	0	0	4	02
4	VSEC	Workshop Practice-III	VI	0	0	4	02
	•	ſ	Total Credit	S	•	•	08

3. VOCATIONAL AND SKILL ENHANCEMENT COURSE (VSEC)

4. HUMANITIES & SOCIAL SCIENCES COURSES [HSSM]

G			Somost	Но	Hours per week			
No	Category	Course Title	er	Lectur	Tutori	Practic	Credi	
				e	al	al	ls	
1	Ability Enhancement Course (AEC)	Communicat ion Skills	Ι	2	0	0	02	
2	Indian Knowledge System (IKS)	Indian Metallurgy	II	2	0	0	02	
3	Entrepreneurship/Econ omics/ Management Courses	Industrial Psychology/ Industrial Engineering	III	2	0	0	02	
4	Value Education Course (VEC)	Environmental Science	III	2	0	0	02	
5	Ability Enhancement Course (AEC)	Technical Communicatio n	IV	0	0	4	02	
6	Entrepreneurship/Econ omics/ Management Courses	Finance and Accounting	IV	2	0	0	02	
7	Value Education Course (VEC)	Universal Human Values -II	IV	2	0	0	02	
		Total Cred	lits				14	

Son vne

BArel

Dean Academics

Head of the Mechanical Engineering Department

S.	Catagory	Course Title	Semester -	H	eek	Total	
No	Category	Course Thie	Semester	Lecture	Tutorial	Practical	Credits
1	Comm. Engg. Project (CEP)/ Field Project (FP)	Mini Project	III	0	0	4	02
2	Project	Project	VII	0	0	8	04
3	Research Methodology	Research Methodology	VIII	3	1	0	04
4	Internship/ OJT	Internship	VIII	-	-	24	12
		Tota	l Credits				22

5. EXPERIENTIAL LEARNING COURSES (ELC)

6. LIBERAL LEARNING COURSES (CO-CURRICULAR COURSES (CC))

S			Semest	Ho	Total			
No	Category	Course Title	er	Lecture	Tutorial	Practica l	Credits	
1	CC	Yoga	Ι	0	0	4	02	
2	CC	NSS/ Sports/ Clubs Activities	II	0	0	4	02	
Total Credits								

7. MULTIDISCIPLINARY MINOR (MD M) and OPEN ELECTIVE (OE) OTHER THAN A PARTICULAR PROGRAM

List of Multidisciplinary Minor Courses from other faculties: Total 14 Credits as per GR **Two courses of 4 credits and two courses of 3 credits.**

Open electives of 8 credits can be offered from these other faculties. **Two courses of 3 credits and 01 course of 02 credits.**

Bon/une.

Bhil

Dean Academics

Specialization	Dramatics	Film Making	Fine Art	Music
Multi- disciplinary Minor - 01	Dramatic Theory, Literature	Videography + Cinematography	Applied Art (Digital Art)	Theory of Indian Music
Multi- disciplinary Minor – 02	Acting	Video Editing and Lighting	Painting (Generative Art)	Ancient and Modern Poetry
Multi- disciplinary Minor – 03	Directing	Story telling Story Boarding	Sculpture (3D- Space)	The Evolution of music
Multi- disciplinary Minor – 04	Playwriting	UI/UX and Animation	Visual Communication (Evolutionary Art)	Music and Film
Multi- disciplinary Minor – 05	Applied Interactive Theatre	Art of Visual Communication	Graphics Art (Print & Printing Art)	Introduction to Electronic and Computer Music
Multi- disciplinary Minor - 06	Technical Theatre	Film & TV Directing	Art Culture	Analysis of Tonal Music

Specialization	Management & Finance	Law	Social Science	Journalism
Multi- disciplinary Minor - 01	Microeconomics	Constitutional Law	Indian Economics	Principles of Communication
Multi- disciplinary Minor – 02	Corporate Social Responsibility	Human Rights & International Law	Introduction to Sociology	Fundamentals of Journalism
Multi- disciplinary Minor – 03	Principles of Accounting	Environmental Law	Geo- Informatics	Cyber Journalism
Multi- disciplinary Minor – 04	Business Intelligence	Civil Procedure Code (CPC)	Introduction to Political Sciences	Basics of Design & Graphics
Multi- disciplinary Minor – 05	Marketing Research	Land Laws including ceiling and other local laws	Corporate sociology	Mass Communication: Concepts and Processes
Multi- disciplinary Minor - 06	Corporate Governance and Business Ethics	Cyber Law	Modern India- Political, Economic & Social Ethos	IT and Online Journalism

Son/une

BArel Dean Academics

Head of the Mechanical Engineering Department

Approved in XXVIth Academic Council Dated: 27th April 2023 In addition to above courses following Groups are offered as Multidisciplinary Minor by Mechanical Engineering Department

G	S Sal		Samaat	Ho	Total		
S. No	Category	Course Title	er	Lecture	Tutorial	Practica l	Credits
1	MD M	Photovoltaic Energy System	III	4	0	0	04
2	MD M	Energy Management	IV	4	0	0	04
3	MD M	Energy Efficiency of Thermal Utility	V	3	0	0	03
4	MD M	Sustainable Energy Conversion System	VI	3	0	0	03
		Тс	otal Credi	ts			14

A) Energy Management Group

* Equivalent online courses (NPTEL/SWAYAM/MOOC/COURSERA/OTHERS) will be approved by BoS Chairman

B) Manufacturing Group

S			Somost	Ho	ours per we	ek	Total				
s. No	Category	Course Title	er	Lecture	Tutorial	Practica l	Credits				
1	MD M	Production Technology	III	4	0	0	04				
2	MD M	Metrology and Quality Control	IV	4	0	0	04				
3	MD M	Production Planning and Control	V	3	0	0	03				
4 MD M		Computer Aided Design	VI	3	0	0	03				
	Total Credits										

* Equivalent online courses (NPTEL/SWAYAM/MOOC/COURSERA/OTHERS) will be approved by BoS Chairman

Son Ne.

BAril

Head of the Mechanical Engineering Department

Dean Academics

Approved in XXVIth Academic Council Dated: 27th April 2023 In addition to above courses following courses are offered as Open Electives (OE) by Mechanical Engineering Department

c			Somost	Ho	ours per we	ek	Total
s. No	Category	Course Title	er	Lecture	Tutorial	Practica l	Credits
1	OE	Industrial Psychology / Engineering Economics / Ethical Values	Ш	2	0	0	02
2	OE	Total Quality Management / Industrial Management / Manufacturin g Management	IV	3	0	0	03
3	OE	Entrepreneurs hip Development / Financial Management / IT Management	V	3	0	0	03
		То	otal Credi	ts			08

Son/une

Bhil

Dean Academics

9. HONORS

Student has to choose and One Honor out of the Four Honor groups provided below

S			Semest	Ho	ours per we	ek	Total				
S. No	Category	Course Title	er	Lecture	Tutorial	Practica l	Credits				
1	Honors	Additive Manufacturin g Technology	V	4	0	0	04				
2	Honors	Design for Additive Manufacturin g	VI	4	0	0	04				
3	Honors	Additive Manufacturin g Design	VII	4	0	0	04				
4	Honors	3D printing and Applications	VIII	4	0	0	04				
5	Honors	Mini Project	VIII	0	0	4	02				
	Total Credits										

A) Additive Manufacturing Group

B) Robotics & Automation Group

S			Somost	Ho	ours per we	ek	Total			
No	Category	Course Title	er	Lecture	Tutorial	Practica l	Credits			
1	Honors	Principles of Robotics	V	4	0	0	04			
2	Honors	Robot Programming and Simulation	VI	4	0	0	04			
3	Honors	Industrial Automation	VII	4	0	0	04			
4	Honors	Artificial Intelligence in Robotics	VIII	4	0	0	04			
5	Honors	Mini Project	VIII	0	0	4	02			
	Total Credits									

Son une.

BArel

Dean Academics

Approved in XXVIth Academic Council Dated: 27th April 2023

G			Somost	He	ours per we	ek	Total			
S. No	Category	Course Title	er	Lecture	Tutorial	Practica l	Credits			
1	Honors	Energy Audit	V	4	0	0	04			
2	Honors	Energy Efficient Building	VI	4	0	0	04			
3	Honors	Industrial Safety and Fire Audit	VII	4	0	0	04			
4	Honors	Heat Exchanger Design	VIII	4	0	0	04			
5	Honors	Mini Project	VIII	0	0	4	02			
	Total Credits									

C) Energy System Group

D) Mechanical Design Group

G			Somost	Но	ours per we	ek	Total		
No	Category	Course Title	er	Lecture	Tutorial	Practica l	Credits		
1	Honors	Optimum Design	V	4	0	0	04		
2	Honors	Advanced Machine Design	VI	4	0	0	04		
3	Honors	Product Design	VII	4	0	0	04		
4	Honors	Computer Aided Analysis	VIII	4	0	0	04		
5	Honors	Mini Project VIII		0	0	4	02		
Total Credits									

Son/une. BArel

Dean Academics

Government College of Engineering, Aurangabad (An Autonomous Institute of Government of Maharashtra)

Teaching and Evaluation Scheme from Academic Year 2023-24 as per NEP - 2020 First Year B. Tech. Program in Mechanical Engineering

	Semester – I												
Sr. No	Catego	Course	Course Title	Te	achi	ng	lits	Co	ntinu torr	ous Ev ns of N	aluatio Aarke	on in	
110	1 y	Coue		L	T	P	Cred	ISE	ISE	ISUI	ESE	Total	
								Ι	II	III			
1.	BSC	MABS C1001	Mathematics – I	3	1	0	4	15	15	10	60	100	
2.	BSC	PHBS C1001	Optics, Acoustics and Engineering materials	3	0	0	3	15	15	10	60	100	
3.	BSC	PHBS C1003	Lab Physics	0	0	2	1	-	-	25	-	25	
4.	ESC	MEES C1001	Engineering Graphics	2	0	0	2	10	10	-	30	50	
5.	ESC	MEES C1002	Lab Engineering Graphics	0	0	4	2	-	-	50	-	50	
6.	ESC	EEES C1013	Basics of Electrical and Electronics Engineering	3	0	0	3	15	15	10	60	100	
7.	VSEC	ETVS E1002	Engineering Exploration	0	0	4	2	-	25	25	-	50	
8.	AEC	INAE C1001	Communication Skills	2	0	0	2	10	10	-	30	50	
9.	CC	INCC C1001	Yoga	0	0	4	2	-	-	50	-	50	
Tota	al			13	1	14	21	65	90	180	240	575	

Induction Program (Mandatory)	3 Weeks Duration
Induction program to be completed at the start of the first year.	 Physical activity Creative Arts Universal Human Values Literary Proficiency Modules Lectures by Eminent People Visits to local Areas Familiarization to Dept./Branch & Innovations

13

Son/vne

Bhil

Head of the Mechanical Engineering Department

Dean Academics

	Semester – II												
Sr. No	Catego ry	Course Code	Course Title	Teaching Scheme			edits	Co	ontinu teri	ous Ev ns of N	aluatio Aarks	on in	
				L	Τ	Р	Cr	ISE I	ISE II	ISE III	ESE	Total	
1.	BSC	MABS C1003	Mathematics – II	3	1	0	4	15	15	10	60	100	
2.	BSC	CHBS C1002	Battery Science, Lubricants and Green Chemistry	3	0	0	3	15	15	10	60	100	
3.	BSC	CHBS C1003	Lab Chemistry	0	0	2	1	-	-	25	-	25	
4.	ESC	AMES C1001	Engineering Mechanics	3	0	0	3	15	15	10	60	100	
5.	ESC	AMES C1003	Lab Engineering Mechanics	0	0	2	1	-	-	25	-	25	
6.	ESC	MEES C1003	Design Thinking	2	0	0	2	10	10	-	30	50	
7.	ESC	MEES C1004	Lab Design Thinking	0	0	2	1	-	-	25	-	50	
8.	PCC	MEPC C1001	Basics of Mechanical Engineering	2	0	0	2	10	10	-	30	50	
9.	VSEC	MEVS E1001	Workshop Practice-I	0	0	4	2	-	-	50	-	50	
10.	IKS	MEIK S1001	Indian Metallurgy	2	0	0	2	10	10	-	30	50	
11.	CC	INCCC1002 / INCCC1003 / INCCC1004	N.S.S / Sports / Club Activities	0	0	4	2	-	-	50	-	50	
Tota	Total			15	1	14	23	75	75	205	270	625	

Level 4.5 Exit Criteria: Mandatory Courses to be completed after first year for obtaining One Year UG Certificate in Mechanical Engineering

Sr. No	Catego ry	Course Code	Course Title	Teaching Scheme			edits	Continuous Evaluation in terms of Marks				
				L	Т	Р	\mathbf{Cr}	ISE I	ISE II	ISE III	ESE	Total
1.	OJT	MEINT10 01	Internship	0	0	16	8	-	-	100	100	200
				OR								
2.	VSEC	MEVSE1 002	Computer Aided Drafting and Modeling*	0	0	8	4	-	-	50	50	100
3.	VSEC	MEVSE1 003	Programming and Problem Solving*	0	0	8	4	-	-	50	50	100

* Equivalent online courses (NPTEL/SWAYAM/MOOC/COURSERA/OTHERS) will be approved by BoS Chairman

Bhil

Son/une

_ .

Dean Academics

Government College of Engineering, Aurangabad (An Autonomous Institute of Government of Maharashtra)

Tentative Teaching and Evaluation Scheme from Academic Year 2024-25 as per NEP - 2020 Second Year B. Tech. Program in Mechanical Engineering

	Semester						- 111								
Sr. No	Catego ry	Course Code	Course Title	Te Se	achi chen	ng 1e	edits	Co	ntinuo terr	ous Ev ns of N	aluatio Marks	n in			
				L	Т	Р	Cre	ISE I	ISE II	ISE III	ESE	Total			
1.	PCC		Machine Drawing	3	0	0	3	15	15	10	60	100			
2.	PCC		Machine Drawing Lab	0	0	2	1	-	-	-	25	25			
3.	PCC		Manufacturing Processes	2	0	0	2	10	10	-	30	50			
4.	PCC		Manufacturing Processes Lab	0	0	2	1	-	-	-	25	25			
5.	PCC		Engineering Thermodynamics	2	0	0	2	10	10	-	30	50			
6.	PCC		Engineering Thermodynamics Lab	0	0	2	1	-	_	-	25	50			
7.	MD M		Multidisciplinary Minor	4	0	0	4	15	15	10	60	100			
8.	OE		Open Elective-I	2	0	0	2	10	10	-	30	50			
9.	HSSM		Industrial Psychology/ Industrial Engineering	2	0	0	2	10	10	-	30	50			
10.	VEC		Environmental Science	2	0	0	2	10	10	-	30	50			
11.	FP / CEP		Mini Project	0	0	4	2	-	25 25 50						
Tota	ıl			17	0	10	22	80	80	45	370	575			
Ор	en Electiv	ve - I				1	1	L		L	<u>.</u>				

Compation II

Son/

Bhil

Dean Academics

Sr. No	Catego ry	Course Code	Course Title	Te Se	Teaching Scheme			Co	ntinu teri	ous Ev ns of N	aluatio Marks	on in
				L	Т	Р	Cr	ISE I	ISE II	ISE III	ESE	Total
1.	PCC		Material Science and Metallurgy	3	0	0	3	15	15	10	60	100
2.	PCC		Material Science and Metallurgy Lab	0	0	2	1	-	-	-	25	25
3.	PCC		Strength of Materials	3	0	0	3	15	15	10	60	100
4.	PCC		Strength of Materials Lab	0	0	2	1	-	-	-	25	25
5.	MD M		Multidisciplinary Minor	4	0	0	4	15	15	10	60	100
6.	OE		Open Elective-II	3	0	0	3	15	15	10	60	100
7.	VSEC		Workshop Practices-II	0	0	4	2	-	-	25	25	50
8.	AEC		Technical Communication	0	0	4	2	-	-	50	-	50
9.	HSSM		Finance and Accounting	2	0	0	2	10	10	-	30	50
10.	VEC		Universal Human Values -II	2	0	0	2	-	-	50	-	50
Total 16			0	12	22	70	70	165	345	650		
Ор	Open Elective II											

Semester – IV

Level 5.0 Exit Criteria

Mandatory Courses to be completed after Second Year for obtaining Two Years UG Diploma in Mechanical Engineering

Sr. No	Catego ry	Course Code	Course Title	Teaching Scheme				Co	Continuous Evaluation in terms of Marks			
				L	Т	Р	\mathbf{Cr}	ISE I	ISE ISE ISE I II III			Total
1.	OJT		Internship	0	0	16	8	-	-	100	100	200
				OR								
2.	VSEC		CNC Programming*	0	0	8	4	-	-	50	50	100
3.	VSEC		Minor Project	0	0	8	4	-	-	50	50	100

*Equivalent online courses (NPTEL/SWAYAM/MOOC/COURSERA/OTHERS) will be approved by BoS Chairman

Sonpre

Bhul Dean Academics

Government College of Engineering, Aurangabad (An Autonomous Institute of Government of Maharashtra)

Tentative Teaching and Evaluation Scheme from Academic Year 2025-26 as per NEP - 2020 Third Year B. Tech. Program in Mechanical Engineering

			Sem	ester	$-\mathbf{V}$							
Sr. No	Catego ry	Course Code	Course Title	Te Se	eachi chen	ng 1e	edits	Co	ontinuo terr	ous Ev ns of N	aluatio Aarks	n in
				L	Τ	Р	Cro	ISE I	ISE II	ISE III	ESE	Total
1.	PCC		Machine Design - I	2	1	0	3	15	15	10	60	100
2.	PCC		Machine Design - I Lab	0	0	2	1	-	-	-	25	25
3.	PCC		Theory of Machines	2	0	0	2	10	10	-	30	50
4.	PCC		Lab- Theory of Machines	0	0	2	1	-	-	-	25	25
5.	PCC		Mathematics for Mechanical Engineer / NACM	2	0	0	2	10	10	-	30	50
6.	PCC		Fluid Mechanics & Turbo machine	2	0	0	2	10	10	-	30	50
7.	PCC		Fluid Mechanic & Turbo machine Lab	0	0	2	1	-	-	-	25	25
8.	PEC		Program Elective- I	3	0	0	3	15	15	10	60	100
9.	PEC		Program Elective - I Lab	0	0	2	1	-	-	-	25	25
10.	MD M		Multidisciplinary Minor	3	0	0	3	15	15	10	60	100
11.	OE		Open Elective-III	3	0	0	3	15	15	10	60	100
		Tota	1	17	1	8	22	90	90	40	430	650
Professional Elective - I					Open Elective - III							
1. M	1. Metrology and Quality Control											
2. M	lechanical	l Measure	ements									
3. D	esign for N	Aanufactu	ring and Assembly									

Son None

Bhil

Head of the Mechanical Engineering Department

Dean Academics

Sr. No	Catego ry	Course Code	Course Title	Te Se	achi chen	ng 1e	edits	Co	ontinu teri	ous Ev ns of N	aluatio Marks	on in			
				L	T	Р	Cre	ISE I	ISE II	ISE III	ESE	Total			
1.	PCC		Heat & Mass Transfer	2	0	0	2	10	10	-	30	50			
2.	PCC		Heat & Mass Transfer Lab	0	0	2	1	-	-	-	25	25			
3.	PCC		Mechatronics	2	0	0	2	10	10	-	30	50			
4.	PCC		Mechatronics Lab	0	0	2	1	-	-	-	25	25			
5.	PCC		Machine Design- II	3	0	0	3	15	15	10	60	100			
6.	PCC		Tool Design	3	0	0	3	15	15	10	60	100			
7.	PEC		Professional Elective - II	3	0	0	3	15	15	10	60	100			
8.	PEC		Professional Elective - II Lab	0	0	2	1	-	-	-	25	25			
9.	PEC		Professional Elective - III	2	0	0	2	10	10	-	30	50			
10.	MD M		Multidisciplinary Minor	3	0	0	3	15	15	10	60	100			
11.	VSEC		Workshop Practice- III	0	0	4	2	-	-	25	25	50			
Tota	l			18	0	10	23	95	95	95 75 460 675					
Prof 1. Po 2. IC	f essional ower plan C Engine	Elective t Enginee	- II ering		Professional Elective III1. Automatic Control System2. Hybrid and Electric Vehicle										
3. Re	enewable I dditive Ma	∃nergy En inufacturir	gineering		3. I 4. I	Fuel (Cells	and H	lation [ydrog	gen					

Semester – VI

Level 5.5 Exit Criteria

Mandatory Courses to be completed after Third Year for obtaining Three Year Bachelor's Degree in Vocation (B. Voc.) in Mechanical Engineering

Sr. No	Catego ry	Course Code	Course Title	Te Se	achi chen	ng 1e	edits	Continuous Evaluation in terms of Marks				
				L	Т	Р	Cr	ISE I	ISE II	ISE III	ESE	Total
1.	OJT		Internship	0	0	16	8	-	-	100	100	200
	OR											
2.	VSEC		Application of MATLAB for Mechanical Engineering*	0	0	8	4	-	-	50	50	100
3.	VSEC		Minor Project	0	0	8	4	-	-	50	50	100

* Equivalent online courses (NPTEL/SWAYAM/MOOC/COURSERA/OTHERS) will be approved by BoS Chairman

Bhil

Dean Academics

Head of the Mechanical Engineering Department

Son/une

Approved in XXVIth Academic Council Dated: 27th April 2023

Government College of Engineering, Aurangabad (An Autonomous Institute of Government of Maharashtra)

Tentative Teaching and Evaluation Scheme from Academic Year 2026-27 as per NEP - 2020 Final Year B. Tech. Program in Mechanical Engineering

Sr	Catago	Course	Course Title		oohi	na		Co	ntinu	Continuous Evaluation in							
No	Calego	Code	Course mue		chon	ng	lits	Cu	tori	ous Ev ns of N	aluatio Aorke)II III					
110	Тy	Coue					rec										
				L	Т	Р	Ü	ISE I	ISE II	ISE III	ESE	Total					
1.	PCC		Heating Ventilation, Air Conditioning and Refrigeration	3	0	0	3	15	15	10	60	100					
2.	PCC		Heating Ventilation, Air Conditioning and Refrigeration Lab	0	0	2	1	-	-	-	25	25					
3.	PCC		CAD, CAM & CAE	3	0	0	3	15	15	10	60	100					
4.	PCC		CAD, CAM & CAE lab	0	0	2	1	-	-	-	25	25					
5.	PCC		Artificial Intelligence and Machine Learning	3	0	0	3	15	15	10	60	100					
6.	PCC		Artificial Intelligence and Machine Learning Lab	0	0	2	1	-	-	-	25	25					
7.	PEC		Professional Elective - IV	3	0	0	3	15	15	10	60	100					
8.	PEC		Professional Elective - IV Lab	0	0	2	1	-	-	-	25	25					
9.	PEC		Professional Elective - V	3	0	0	3	15	15	10	60	100					
10.	PEC		Professional Elective – V Lab	0	0	2	1	-	-	-	25	25					
11.	ELC		Project	0	0	8	4	-	-	100	100	200					
		Tota	1	15	0 18 24 75 75 150 525 820							820					
Pro	fessional	Elective -	- IV	Professional Elective - V													
1. T	ribology			1. Finite Element Analysis													
2. P	roduction	and Oper	ation Management		2. 1	Mech	anics	s of Co	ompos	ite Ma	aterials						
3. M	lechanism	Design			3. A	dvar	nced]	Produ	ction l	Proces	ses						
4. A	utomobile	Engineerin	ng		4. (Comp	outati	onal F	Fluid I	Dynam	ics						

Semester – VII

Bhil

			Seme		1 44	-								
Sr. No	Catego ry	Course Code	Course Title	Te Se	eachi chen	aching cheme		aching cheme		Co	ntinu teri	ous Ev ns of N	aluatio Aarks	on in
				L	Т	Р	\mathbf{Cr}	ISE	ISE	ISE	ESE	Total		
								Ι	II	III				
1.	PEC		Professional Elective – VI*	2	0	0	2	10	10	-	30	50		
2.	ELC		Research Methodology*	3	1	0	4	15	15	10	60	100		
3.	OJT		Internship	-	-	24	12	-	-	100	100	200		
Tota	l			5	1	24	18	25	25	110	190	350		
Prof	fessional	Elective	- VI					•	•	•				
1.De	esign of H	leat Excha	anger											
2.Int	roductior	n to Nucle	ear Engineering											
3. St	eam Tech													
4. C	omputatio													
5. El	lectrical V	/ehicle D	esign											

Semester – VIII

* Equivalent online courses (NPTEL/SWAYAM/MOOC/COURSERA/OTHERS) will be approved by BoS Chairman

Son/

Bhil

MABSC1001: Mathematics – I										
Teaching Scheme	Examination Scheme									
Lectures: 03 Hrs / Week	ISE I	15 Marks								
Tutorial: 01 Hrs / Week	ISE II	15 Marks								
Credits: 04	ISE III	10 Marks								
	End Semester Examination	60 Marks								

Course Description: MABSC1001: Mathematics-I is compulsory course for first year B. Tech. Civil Engineering, Mechanical Engineering., Computer Science & Engineering and Information Technology students.

Course Outcomes:

After completing the course students will able to

	Course Outcomes	Bloom's	Unit
		Taxonomy	
		Level	
CO1	Define Beta, Gamma and error functions and find the roots	K1	1,2,3,4,5
	of Complex Numbers, Rank of Matrix, limit of function,		
	series expansion and maxima – minima of functions,		
	asymptotes of given curves.		
CO2	Summaries the Complex Numbers; Explain the Rank of	K2	1,2,3,4,5
	Matrix, successive differentiation, Special functions (Beta		
	and Gamma functions)		
CO3	Identify the real and imaginary part of logarithm of complex	K2	1,2
	numbers, eigen values and eigen vectors.		
CO4	Solve the system of linear equations using Gauss elimination	K2	2,3,4
	and Gauss Jordan Method, Leibnitz's theorem, definite		
	integrals using Beta and Gamma functions and definite		
	integrals using rule of Differentiation under integral sign.		
CO5	Apply De-Moivre's theorem, Cayley Hamilton theorem,	К3	1,2,4,5
	knowledge of integral calculus and sketch the approximate		
	shape of the curves.		

Detailed Syllabus:

Unit 1	Complex Numbers
	Definition of complex numbers, Argand Diagram, De-Moivre's theorem and its
	application to find roots of algebraic equations, expansions of trigonometric
	functions, Circular and Hyperbolic functions inverse Hyperbolic functions,
	Logarithm of complex numbers, separation into real and imaginary parts.
Unit 2	Matrices
	Rank of matrix, echelon form of matrix, normal form of matrix, algebraic system of
	m linear equations in n unknowns, Gauss elimination and Gauss Jordan elimination
	method, linear dependence and independence of vectors, orthogonal matrix, linear
	transformations, matrix of linear transformation, rank nulity theorem, Eigen values
	and Eigen vectors, Cayley Hamilton theorem and its applications.
Unit 3	Differential Calculus
	nth order ordinary derivatives of elementary functions, Leibnitz's theorem,
	expansion of function in power series, Taylor's series, Maclaurin's series
	indeterminate forms and L'hospital rule, maxima and minima, converge of sequence

Bhil

Son/une

	and series, range of convergence of power series, test of convergence - ratio test
	and comparison test.
Unit 4	Integral Calculus
	Beta function, Gamma function, rules of Differentiation Under Integral Sign, error
	function, application of definite integrals to evaluate surface area and volume of
	revolutions.
Unit 5	Curve Tracing and its applications
	Tracing of cartesian curves, polar curves and parametric equations, rectification of
	plane curves: cartesian and polar.

Text and Reference Books

- 1. Erwin Kreyszing, Advanced Engineering Mathematics,10th Edition, Mumbai: Willey Eastern Ltd. 2015.
- 2. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, New Delhi: Khanna publication, 2017.
- 3. Ramana B.V. Higher Engineering Mathematics,11 th Reprint, New Delhi: Tata McGraw Hill, 2010.
- 4. David Poole, Linear Algebra: A Modern Introduction, 3rd Edition, USA: BROOKS/COLE CENGAGE Learning, 2011.
- 5. Ravish R. Singh, Mukul Bhatt, Engineering Mathematics- A tutorial approach, 4th Edition, New Delhi: Tata McGraw Hill Education Pvt. Ltd.2018.
- 6. Dass H. K. Advanced Engineering Mathematics, 22nd Edition, New Delhi: S. Chand publications, 2018.
- 7. P. N. Wartikar and J. N. Wartikar, A text book of Engineering Mathematics (Vol. 1 & 2), Reprint, Pune: Pune Vidhyarthi Griha Prakashan, 2013.

Assessment: ISEI, II, III (Class Test-1, Class Test-2, TA) & ESE TA: Students will perform one or more of the following activities

- 1. Surprise Test
- 2. Assignment using Mathematical tools like Mathematica/MATLAB or similar.
- 3. Quiz
- 4. Any other activity suggested by course coordinator

Assessment Pattern:

Assessment Pattern Level No.	Knowledge Level	ISE I (Class Test-1)	ISE II (Class Test-2)	ISE III (TA + Surprise Test)	End Semester Examination
K1	Remember	5	5		
K2	Understand	10	10		60
K3	Apply			10	
K4	Analyze				
K5	Evaluate				
K6	Create				
Total Marks 1	00	15	15	10	60

Son/

(BArie)

Dean Academics

Head of the Mechanical Engineering Department

Approved in XXVIth Academic Council Dated: 27th April 2023

	DO 1	DOA	DOA	DO 1	D07	DOC	DOT	DOO	DOO	DO 10	DO11	DO 10
Course	POI	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	POI0	POIT	PO12
Outcomes												
CO1	2	2	1									1
CO2	2	2	1									1
CO3	2	2	1									1
CO4	2	3	1		2				2			1
CO5	3	3	1		2				2			1

Mapping of Course outcomes with Program outcomes:

1-Low, 2-Medium, 3-High

Son vne

Bheil

Dean Academics

PHBSC1001: Optics, Acoustics and Engineering Materials					
Teaching Scheme Examination Scheme					
Lectures: 03 Hrs. / Week	ISE I	15 Marks			
Credits: 03	ISE II	15 Marks			
	ISE III	10 Marks			
	End Semester Examination	60 Marks			

Course Description: The course is mandatory course for first year B. Tech. Civil, Mechanical and Electrical Engineering programs in first semester. The course objective is to teach fundamental principles in Physics and relate the understanding to applications.

Course Outcomes:

After completing the course students will able to

	Course Outcomes	Bloom's
		Taxonomy
		Level
CO1	Define interference, thin film interference, Fraunhofer diffraction, resolving power, polarization, double refraction, Free, damped and forced oscillations, resonance, state features of magnetic and dielectric materials, acoustical demands of building, methods of production of ultrasonics, types of energy bands.	K1
CO2	Explain the concepts interference, diffraction, polarization, dielectric and magnetic properties, semiconductors, architectural acoustics and ultrasonics, oscillations, resonance, wave motion,	K2
CO3	Illustrate the engineering applications of interference, diffraction, polarization, dielectric and magnetic properties, semiconductors and ultrasonics	K3
CO4	Identify, formulate and solve physical problems related to engineering	K4
CO5	Apply the fundamental principles of interference, diffraction, polarization, dielectric and magnetic properties, semiconductors, architectural acoustic and ultrasonic in engineering context	K5

Detailed Syllabus:

Unit 1	Optics-				
	Interference- Interference due to thin film of uniform thickness, wedge shaped				
	film, Newton's rings formation and theory, Anti-reflection coating.				
	Diffraction- Fraunhofer diffraction at single slit (geometrical method), Conditions				
	for maxima and minima, Double slit Diffraction, Plane diffraction grating,				
	Rayleigh's criterion of resolution, resolving power of grating.				
	Polarization- Polarization by reflection, Polarization by double refraction, Phase				
	difference and path difference, Quarter wave plate, Half wave plate, Superposition				
	of e-ray and o-ray, Production of circularly and elliptically polarized light, Polaroid				
	sheets.				
Unit 2	Acoustics and ultrasonics				
	Acoustics- classification of sound, musical sound, noise, characteristics of musical				
	sounds-pitch, loudness or intensity, measurement of intensity level, decibel,				
	quality or timbre, reflection of sound, echo, reverberation, reverberation time,				
	absorption of sound, absorption coefficient, Sabine's formula with derivation,				
	factors affecting architectural acoustics.				
	sounds-pitch, loudness or intensity, measurement of intensity level, decibel, quality or timbre, reflection of sound, echo, reverberation, reverberation time, absorption of sound, absorption coefficient, Sabine's formula with derivation, factors affecting architectural acoustics.				

Bhil

Son Mare

	Ultrasonics- Production of ultrasonic waves by piezoelectric and magnetostriction				
	method, engineering applications of ultrasonic waves.				
Unit 3	Engineering Materials-				
	Dielectric properties of material- dielectric constant, induced dipole, permanent				
	dipole, polarization in dielectric materials, types of polarization, polar and non-				
	polar dielectrics, frequency dependence of dielectric constant, applications of				
	dielectric materials.				
	Magnetic materials- review of basic concepts magnetization, magnetic				
	susceptibility, relative permeability, classification of diamagnetic, paramagnetic and				
	ferromagnetic materials, domain hypothesis, hysteresis or BH curve in				
	ferromagnetic materials, soft and hard magnetic materials, applications.				
Unit 4	Semiconductors-				
	Band theory of Solids, Classification of solids on the basis of energy band theory,				
	Fermi-Dirac statistics, Concept of Fermi level and its variation with temperature,				
	Density of states, Position of Fermi level in intrinsic semiconductor (with				
	derivation) and in extrinsic semiconductor, Conductivity of semiconductor,				
	Working of p-n junction from energy band diagram- forward and reverse biased,				
	Hall effect in semiconductor.				
Unit 5	Oscillations -				
	Free, damped and forced oscillations, resonance, theory of resonant oscillations-				
	condition for amplitude resonance, sharpness of resonance, differential equation of				
	wave motion, damped harmonic motion- over damped, critically damped and under				
	damped cases, transverse vibrations of stretched string.				

Text and Reference Books

- 1. M. N. Avadhanulu, and P. G. Kshirsagar. *A Textbook Of Engineering Physics*, 5th ed. New Delhi: S. Chand and company Ltd., 2014
- 2. R. K. Gaur, S. L. Gupta. *Engineering Physics*, 14th ed. New Delhi: Dhanpat Rai and Sons Publications, 2012
- 3. M. R. Srinivasan, *Physics for Engineers*, 2nd ed. New Delhi: New Age International Publishers, 2009.
- 4. D. Halliday, and R. Resnic. *Fundamentals of Physics*, 9th ed. Noida: John–Wiley and Sons, 2010
- 5. Arthur Beiser, Perspectives of modern Physics, Mc-Graw Hill, US, 1969

Assessment: ISE I-Class Test-I of Maximum Marks-15 ISE II-Class Test-II of Maximum Marks-15

ISE III- Teacher's Assessment: Teachers Assessment of 10 marks is based on one of the / or combination of surprise test, assignment, quiz, any other activity suggested by course coordinator

Dean Academics

Assessment Pattern:

Assessment	Knowledge	ISE I	ISE II	ISE III	End Semester
Pattern Level	Level				Examination
No.					
K1	Remember	5	5	2	12
K2	Understand	5	5	6	18
K3	Apply	5	5	2	12
K4	Analyze				12
K5	Evaluate				6
K6	Create				
Total Marks 100		15	15	10	60

Assessment table:

Course Outcome	CO1	CO2	CO3	CO4	CO5
Assessment Tool	K1	K2	K3	K4	K5
ISEI Class Test-I (15 Marks)	5	5	5		
ISEII Class Test-II (15 Marks)	5	5	5		
IS III TA(10 Marks)	2	6	2		
ESE Assessment (60 Marks)	12	18	12	12	6
Total Marks 100	24	34	24	12	6

Mapping of Course outcomes with Program outcomes:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	2									2		
CO2	2											
CO3	2											
CO4	2											
CO5	2											

1-Low, 2-Medium, 3-High

Son/une.

Bhil Dean Academics

PHBSC1003: Lab Physics					
Teaching Scheme	Examination Scheme				
Practical: 02 Hrs. / Week	ISE III	25 Marks			
Credit: 01					

Course Outcomes:

After completing the course students will able to

Course Outcomes				
CO1	Demonstrate basic laws of Physics with experimental process			
CO2	Conduct experiments to understand the relationship between variables in physical			
	problems			
CO3	Interpret experimental data to examine the physical laws			
CO4	Illustrate the relevance between theoretical knowledge and means to imply it in a			
	practical manner by performing various experiments			
CO5	Work in teams and understand the effective team dynamics.			

List of the Experiments:

The student shall perform minimum eight experiments of the following:

Sr.	Title of the Experiments	Skill /	CO
No.		Knowledge	
		Level	
1	e/m by Thomson's method.	S1/K2	CO3
2	Determination of radius of curvature of Plano-convex lens by	S1/K1	CO1
	Newton's ring.		
3	Determination of the wavelength of light of a given source	S1/K2	CO1
	using diffraction grating.		
4	Resolving power of telescope.	S1/K2	CO3
5	Study of C.R.O (amplitude and frequency measurement).	S1/K1	CO5
6	Specific rotation of sugar solution by Laurent's half shade	S1/K2	CO4
	polarimeter.		
7	Determination of band gap of a semiconductor.	S1/K2	CO3
8	To study temperature dependence of resistivity of a	S1/K2	CO3,
	semiconductor using four probe method.		CO5
9	To determine the Hall coefficient of a semiconductor material	S1, S3/K2	CO1
	and then evaluate carrier type and its density of charge carrier.		
10	Study of solar cell characteristics.	S1/K1	CO2,
			CO5
11	Determination of wavelength of Laser using grating.	S1, S2/K2	CO3
12	Determination of numerical aperture of an optical fiber.	S1, S3/K2	CO3
13	To plot the hysteresis loop of a given magnetic material (iron).	S1/K2	CO2
14	To study characteristics of photovoltaic cell.	S1/K2	CO3
15	Study of divergence of Laser beam.	S2, S3/K2	CO2,
			CO5
16	To measure thickness of fine wire and grating element with the	S1/K2	CO1
	help of Laser source.		
17	To draw V/I characteristics of forward & reverse biased P-N	S1, S3/K2	CO3
	junction diode.		
18	Determination of velocity of sound through water using	S1, S3/K2	CO3
	ultrasonic interferometer.		

Son/vne

BAril

Dean Academics

Assessment:

ISE III- Continuous Assessment of individual student in a batch during each experiment Maximum Marks-25

Assessment Pattern:

Assessment	Knowledge	ISE III
Pattern Level	Level	
No.		
K1	Remember	10
K2	Understand	15
K3	Apply	
K4	Analyze	
K5	Evaluate	
K6	Create	
Total Marks		25

Assessment	Knowledge	ISE III
Pattern Level	Level	
No.		
S 1	Imitation	15
S2	Manipulation	05
S 3	Precision	05
Total Marks		25

Mapping of Course outcomes with Program outcomes:

FF 8 -												
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	3			2					3			
CO2	3			2								
CO3	3	3	2	2								
CO4	3	3	2	2								
CO5									2			

1 - Low, 2 - Medium, 3 - High

Son vine

BAril

Dean Academics

MEESC1001: Engineering Graphics (For MECH/ETC/CSE/IT)						
Teaching Scheme	Teaching Scheme Examination Scheme					
Lectures: 02 Hrs. / Week	ISE I	10 Marks				
Credits: 02	ISE II	10 Marks				
	End Semester Examination 30 Marks					

Course Description: All engineering activities (design/ manufacturing/ operation/ servicing) for any product from any discipline involve a team of people who communicate graphically. Hence, every engineer must have exposure and some competence in presenting ideas as pictures, and be able to unambiguously interpret drawing from others. This course will help develop basic visualization competency as well as ability to representing ideas on both paper and computer.

Course Outcomes:

After completing the course students will able to

	Course Outcomes						
CO1	Understand concept of projection of line application in design.						
CO2	Apply the concept to draw the basic views related to projections of Planes						
CO3	Gain knowledge about orthographic projections						
CO4	Sketch the different concepts of isometric projections						

Detailed Syllabus:

Unit 1	Projections of Lines and Planes
	Projections of Straight Lines: Introduction to point, Projections of points in four
	quadrants, projections of points in reference plane, Introduction and concept of line,
	cases: - line parallel to both the plane, line parallel to one plane and perpendicular
	to the other.
	Plane cases: surface parallel to one reference plane and perpendicular to other
	reference plane, plane surface inclined to one reference plane and perpendicular to
	other reference, projections of planes inclined to both reference planes
Unit 2	Orthographic Projections:
	Types of lines, methods of dimensioning and types of dimensioning, Principle of
	orthographic projections (First and third angle orthographic projection methods)
	Exercise shall be consist of orthographic projection of different machine parts
	problem by first angle orthographic projection methods, all types sectional
	orthographic projections (First angle orthographic projection methods). Sectional
	view problem shall be solving consist of various mechanical components and by
	First angle orthographic projection methods.
Unit 3	Isometric view:
	Isometric Views: Introduction to pictorial views, isometric scale, isometric
	projections and different machine parts isometric views problems on various
	mechanical components.

Bhil

Dean Academics

Text and Reference Books

- 1. Engineering Graphics with an introduction to computer aided drafting, vol. I & II, H. G. Phakatkar, Nirali Prakashan, Pune. Feb 2007 onwards.
- 2. A Text book of Engineering Drawing, P.J. Shah, S. Chand & company Ltd., New Delhi. 2009
- 3. Engineering Drawing, R. V. Mali & Chaudhari, Vrinda Publication, Jalgaon 1998 onwards.
- 4. Kulkarni, D. M., Rastogi, A. P. and Sarkar, A. K., Engineering Graphics with AutoCAD, PHI 2009
- 5. Engineering Drawing and Graphics + AutoCAD, K. Venugopal, New Age International Publishers, New Delhi,2007
- 6. Engineering Drawing, Bhatt N. D., Panchal V. M., Charotar Publishing House 2008 onwards
- 7. Engineering Graphics, Vol.-I and Vol.-II, Dhabhade M. L., Vision Publications 2003 onwards
- 8. Engineering drawing P.S Gill, S. K. Kataria publication.2012 onwards.

Assessment:

ISE I: Shall be on the basis of Class Tests / Assignments / Quizzes / Field visits / Presentations / Course Projects on first unit.

ISE II: Shall be based on class test on Second unit.

Assessment Pattern:

Assessment Pattern LevelNo.	Knowledge Level	ISE I	ISE II	End Semester Examination
K1	Remember			
K2	Understand	5	5	9
К3	Apply	5	5	12
K4	Analyze			9
K5	Evaluate			
K6	Create			
Total Marks 5	50	10	10	30

Assessment table:

Assessment Tool	K2, K3	K2, K3	K2, K3	K4
	CO1	CO2	CO3	CO4
ISE I (10 Marks)	5	5		
ISE II (10 Marks)			10	
	K2 to K4	K2 to K4	K2 to K4	K2 to K4
ESE Assessment (30 Marks)	6	6	6	6
Total Marks 50	11	11	16	6

Son

Dean Academics

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	1				3							
CO2		2		1						2		
CO3												
CO4	3					1						
CO5												

Mapping of Course outcomes with Program outcomes:

1-Low, 2-Medium, 3-High

Son/une.

BAril

Dean Academics

MEESC1002: Lab Engineering Graphics						
Teaching Scheme Examination Scheme						
Practical: 04 Hrs. / Week	ISE III	50 Marks				
Credit: 02						

Course Outcomes:

After completing the course students will able to

	Course Outcomes					
CO1	Understand the conventions and the methods of engineering drawing					
CO2	Improve their visualization skills so that they can apply these skills in developing					
	new Products.					
CO3	Become proficient in drawing the projections of various machine components.					

List of the Experiments:

The student shall perform following experiments:

Sr.	Title of the Experiments
No.	
1	Introduction to Computer Graphics (CAD) Demonstrating of the theory of CAD
	software, Standard Toolbars and Basic operations used like, Object Properties, Draw,
	Modify and Dimension, Select and erase objects etc. in CAD software package
2	Drawing Five problems based on projections of lines on drawing sheet
3	Drawing Five problems based on projections of planes on drawing sheet
4	Drawing five problems based on sectional orthographic projections on drawing sheet
	and 2 problems using CAD software tool.
5	Drawing five problems based on sectional Isometric projections on drawing sheet and
	2 problems using CAD software tool.

Assessment Pattern:

Assessment Pattern Level No	Knowledge Level	ISE III	ESE
S1	Imitation	10	
S2	Manipulation	20	
S3	Precision	10	
S4	Articulation	10	
S5	Naturalization		
Total Marks	50	50	

Assessment table:

Assessment Tool	S1 to S3	S1, S2	S1
	CO1	CO2	CO3
ISE III TW (50 Marks)	20	15	15
Total Marks 50	20	15	15

Bhil

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	1	2										
CO2			3		2					1		
CO3	1			2	2							

Mapping of Course outcomes with Program outcomes:

1 - Low, 2 - Medium, 3 - High

Son/une.

BAril

Dean Academics

Head of the Mechanical Engineering Department

Approved in XXVIth Academic Council Dated: 27th April 2023

EEESC1013: Basics of Electrical and Electronics Engineering						
Teaching Scheme	Examination Scheme					
Lectures: 03 Hrs. / Week	ISE I	15 Marks				
Credits: 03	ISE II	15 Marks				
	ISE III	10 Marks				
	End Semester Examination	60 Marks				

Course Description: This is the basic course in Electrical Engineering which introduces the basic concepts, different theorem and laws, Electrical circuits to students

Course Objectives:

The objectives of the course are to-

- 1. Impart a basic knowledge of electrical quantities such as current, voltage, power, energy and frequency
- 2. Acquaint with basic laws & theorems of electrical networks
- 3. Explain fundamentals of magnetic circuits and alternating current circuits and solve the circuit problems
- 4. Identify the electrical machines
- 5. Illustrate electrical wiring fundamentals, safety devices and metering

Course Outcomes:

After completing the course students will able to

	Course Outcomes
CO1	Explain the fundamental concepts of AC and DC circuits, electromagnetic induction,
	energy storage systems, electrical wiring, electrical machines, LED and solar lights,
	electrical accessories and metering devices.
CO2	Apply different theorems and electro-magnetic laws for solving AC-DC electric
	circuits.
CO3	Calculate the different parameters of DC machines and induction Motors from given
	data.
CO4	Explain transistor configurations, their comparison and FET devices
CO5	Describe operations of various consumer electronics gadgets

Detailed Syllabus:

Unit 1	D.C. Circuit
	Introduction of circuit active and passive parameter of electrical circuit, Kirchhoff
	current and voltage laws, Source conversion, series and parallel circuit, current and
	voltage division rule, Delta-Star and Star-Delta conversion
Unit 2	Electromagnetic Induction:
	Faraday's laws, statically and dynamically induced emf, self and mutual inductance,
	coefficients of coupling. Magnetic Circuits: Terms related with magnetic circuits,
	Magnetization curve, Magnetic leakage and fringing, Leakage coefficient, Series
	and parallel circuits, magnetic hysteresis and eddy current loss
Unit 3	Introduction of Electrical Machines:
	Classification of Electrical Machines, Construction, working and application: single
	phase transformer, three phase Transformer, Single phase induction motor, Three
	Induction motors and DC motors (No Numerical)
	Selection of electrical motors / drives, Types of electric motors, principle of
	operations and applications

Son/

BAres

Unit 4	Transistors:
	BJT, NPN & PNP transistors, structure, working of NPN transistor. Concepts of
	common base, common emitter & common collector configurations, current gain of
	each, Input & output characteristics of common emitter configuration, comparison
	of three configurations with reference to voltage & current gain, input & output
	resistances and applications. Introduction to JFET, characteristics of MOSFET,
	CMOS devices
Unit 5	Consumer Electronics:
	Basic operation of Microphone & its Characteristics, Basic operation of
	Loudspeakers Concept of acoustic, Loudness level, HDTV, CCTV, latest electronic
	gadgets like Arduino circuits and operations, drivers, controllers, motors

Text and Reference Books

- 1. L. S. Bobrow, *Fundamentals of Electrical Engineering*, Oxford University Press, 2011.
- 2. Vincent Del Toro, *Electrical Engineering Fundamentals*, Prentice Hall India, 2nd ed, 2013.
- 3. Kothari D. P, Nagrathl. J., Basic Electrical Engineering, Tata McGraw Hill, 2010.
- 4. M. S. Naidu, S. Kamakshaiah, *Introduction to Electrical Engineering*, Tata McGraw-Hill, 1995
- 5. E. Hughes, Electrical and Electronics Technology, Pearson, 2010
- 6. Thomas L. Floyd, "Electronic Devices", Pearson Education, 9th ed, 2011
- 7. David A Bell, *Electronic Devices and Circuits*, Oxford University Press
- 8. C. S. Rangan, G. R. Sarma, V. S. V. Mani, *Instrumentation: devices and systems*, Tata McGraw-Hill
- 9. Albert Paul Malvino, Electronic Principles, McGraw-Hill

		1	1	1		1		1	1			
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	2					1	1	1	1	1		1
CO2	3	1				1	1	1	1	1		1
CO3	3	2	1			3	2	2	2	2		2
CO4	2	1										
CO5		2										

Mapping of Course outcomes with Program outcomes:

1 - Low, 2 - Medium, 3 - High

Son

Dean Academics

ETVSE1002: Engineering Exploration						
Teaching Scheme	Examination Scheme					
Practicals: 04 Hrs. / Week	ISE II	25 Marks				
Credits: 02	ISE III	25 Marks				

Course Outcomes:

After completing the course students will able to

	Course Outcomes
CO1	Explain the role of an Engineer as a problem solver
CO2	Identify multi-disciplinary approach required in solving an engineering problem
CO3	Build simple mechanisms using engineering design process
CO4	Interface different peripherals to Arduino.
CO5	Apply basics of engineering project management skills.
CO6	Analyze engineering solutions from ethical & sustainability perspectives

Engineering exploration is a Project-based learning (PBL) based course wherein students will apply their technical knowledge, practical skills to develop a project in a team. A group of 5 students (max) normally will be permitted in a team. A set of need statements will be prepared by team members with the help of course coordinators. These need statements will be converted to Problem Statements. Students will follow Engineering Design process to develop conceptual design and detailed design.

Few of the activities which can be carried out are:

- Catapult design, weight bearing structure using newspapers, bridge making, activity with straws, coloured paper, box of straws, football with papers, paper plane.
- How do you think Engineering design case studies for designing Panipuri/ teal coffee vending/pan making vending machines, grass cutter/mower machine, winding machines, chips making machine, home automation etc (block diagram and components in different blocks), Pugh chart examples.
- Building mechanisms using gears and other components, design mechanisms using linkages, auto inventor for model designing.
- Arduino based experimentation and programming.
- Preparation of time lines for project management.
- Presentation of case studies for ethics, sustainability, and carbon footprint.

Detailed Syllabus:

Module	Introduction to Engineering and Engineering Study 2 hrs
1	Introduction to Engineering and Engineering Study: Difference between science
	and engineering, scientist and engineer needs and wants, various disciplines of
	engineering, some misconceptions of engineering, Expectation for the 21 st century
	engineer and Graduate Attributes.
Module	Engineering Design 15 hrs
2	Engineering Design Process, Multidisciplinary facet of design, Pair wise
	comparison chart, Introduction to mechatronics system, generation of multiple
	solution, Pugh Chart, Motor and battery sizing concepts, introduction to PCB
	design
Module	Mechanisms 4 hrs
3	Basic Components of a Mechanism, Degrees of Freedom or Mobility of a
	Mechanism, 4 Bar Chain, Crank Rocker Mechanism, Slider Crank Mechanism.

36

Son

Bhil

Module	Platform based-development12 h	ırs
4	Introduction to various platform-based development (Arduino) programming as	nd
	its essentials, Introduction to sensors, transducers and actuators and its interfacing	ng
	with Arduino, Introduction to Data Acquisition and Analysis	
Module	Project Management 3 h	hrs
5	Introduction to Agile practices, Significance of teamwork, Project manageme	ent
	tools: Checklist, Timeline, Gantt Chart, Significance of documentation	
Module	Sustainability and Ethics in Engineering 4 h	hrs
6	Introduction to sustainability, Sustainability leadership, carbon footpri	int
	Identifying Engineering as a Profession, Significance of Professional Ethics, Co	ode
	of Conduct for Engineers, Identifying Ethical Dilemmas in different tasks	of
	engineering, Plagiarism check for research papers	
Total Co	ontact Hours 40 H	Irs
Course P	Project Reviews Evaluation of group projects 08 h	irs

Evaluation Scheme							
Name of the Module	Hours	Marks	Evaluation				
1.Introduction to Engineering & Engineering Study	02	3					
2. Engineering Design	15	10					
3. Mechanisms	04	2	15E - II				
4. Platform based development	12	10					
5. Project Management	03	5					
6. Sustainability and ethics in Engineering	04	5					
7. Course Project Reviews	08	10	19E - III				
8.Honor code	_	5					
TOTAL	48	50					

	CO1	CO2	CO3	CO4	CO5	CO6	Total
ISE II	03	10	02	10			25
ISE III		05		05	05	10	25

Mapping of Course outcomes with Program outcomes:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	2	1				1					1	1
CO2	2	2	2	1	1				3	1		
CO3	2	2	3	2	2	1	1		3	1	2	
CO4	2	2	2	2	2				1	1	2	1
CO5		2	2	2	2	1	1	1	3	1	3	
CO6						1	3	3				

 $1-Low,\,2-Medium,\,3-High$

Son vne

BAril

Head of the Mechanical Engineering Department

INAEC1001: Communication Skills				
Teaching Scheme	Examination Scheme			
Lectures: 02 Hrs. / Week	ISE I	10 Marks		
Credits: 02	ISE II	10 Marks		
	End Semester Examination	30 Marks		

Course Description: Communication Skills (INAEC1001) is a one semester compulsory course for the first-year students of all disciplines of the institute.

The course is aimed at introducing the basic of the communication skills. The goal of the course is to improve listening, speaking, reading and writing skills. Thus, the stress in the syllabus in primarily on the development of communicative skills and fostering of ideas.

Course Outcomes:

After completing the course students will able to

	Course Outcomes
CO1	Analyze the situation and overcome the barriers in speaking English and get the ability
	to communicate in professional as well as day to day life.
CO2	Develop personality through corporate etiquettes and take active participation in
	discussion and other academic activities as well.
CO3	Apply proper words and structure in speaking English language and develop
	vocabulary and use of correct English.
CO4	Express them through oral as well as written communication and develop written
	communication for professional and business purpose.
CO5	Use of E-Communication in day to day as well as professional life

Detailed Syllabus:

Unit 1	Communication Skills & Soft Skills
	Basic concept, factor's, process and types of communication, principles of effective communication, barriers of communication, and how to overcome these barriers, basic of soft skills.
Unit 2	Non verbal Communication and Corporate Etiquettes
	Body language and its different aspects, voice dynamics & voice modulation,
	professional appearance, clothing etiquettes and corporate dressing.
Unit 3	Remedial Grammar and Vocabulary Building
	Parts of speech, types of tense, use of articles, synonyms and antonyms, Find out
	the grammatical errors in the given sentences.
Unit 4	Writing Skills and Business Correspondence
	Letter writing, office documents like circulars, notices, minutes, agenda and memos.
	Report writings-technical report, academic report, accident report, resume writing
Unit 5	E-Communication
	Introduction to multi-cultural, global cultural traits, email communication and email
	etiquettes

Text and Reference Books

- 1. S. M. Rai and Urmila Rai, *Business Communication*, 1st ed, New York, USA, New royal book Company Publication, 2010
- 2. Leena Sen, Communication skills, 2nd Revised ed, Publisher-PHI Learning, 2007
- 3. William Sanborn, *Technical communication*, Delhi, Pearson publications ,2014

BArel

38

Son/une

- 4. McGraw Hills brief case books, *Presentation Skills for Managers*, United states, John A. Hill, 1888
- 5. Pravil S.R. Bhatia and S. Bhatia, *Professional Communication Skill*, 8th Revised ed, S. Chand Publications, 2001.
- 6. Daniel G. Riordan and Steven E. Pauley, *Technical Report Writing Today*, 10th ed, USA, Michael Rosenberg Publisher
- 7. B. N. Basu, *Technical Writing*, 1st ed, New Delhi, Prentice Hall of India,2008
- 8. M. A Pink and S. E. Thomas., *English Grammar Composition & Effective Business Communication*, 12th ed, S Chand Publication, 1998
- 9. Sarah Freeman, Written Communication in English, 1st ed, Orient Blackswan publication, 1996

Mapping of Course outcomes with Program outcomes:

<u></u>												
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1						1				3		
CO2						1				3		
CO3						1				3		
CO4									3	3		
CO5					3					3		1

1 - Low, 2 - Medium, 3 - High

Son/

Bhil

Dean Academics

INCCC1001: Yoga				
Teaching Scheme	Examination Scheme			
Practicals: 04 Hrs. / Week	ISE III	50 Marks		
Credits: 02				

Course Description: Yoga - In today's stressful life, there is much more need to experience relaxation and remain focused. The inner connect is very much needed to retain stability. Beyond physical exercise there is much more to do in the field of Yoga. The content of this course includes Yoga, Pranayam, Meditation, Relaxation, rejuvenation and connection with our own self. The introduction of such an experiential course helps to boost self-confidence and with regulation of mind through meditation improves concentration. Meditation is basically training of mind and helps to regulate it. Along with experiential learning, the students are also exposed to learnings contained in the supported literature.

Course Outcomes:

After completing the course students will able to

	Course Outcomes						
CO1	Understand and perform Yoga Asanas						
CO2	Gain knowledge about Pranayama and perform it.						
CO3	Apply the concept of Mediation in everyday life and studies						

List of the Experiments:

The student shall perform following experiments:

1	Perfection in at least 3 types of Yoga-asanas (Trikonasan, Konasan and Ushtrasan)
2	Perfection in at least 3 types of Pranayama (Anulom-Vilom, Bhramari and
	Kapalbhati)
3	Regular practice of Yoga-asanas, Pranayam and Meditation for 10 minutes during
	the allotted periods as per the time table and daily at home.

Text and Reference Books

- 1. The Heartfulness way", Heartfulness Kamlesh Patel and Joshua Pollock
- 2. The Yoga Sutras of Patanjali Sri Swami Satchidananda
- 3. The Yamas and Niyamas Deborah Adele
- 4. Yoga Practices for Anxiety and Depresion --- H. R. Nagendra & R. Nagarathana

Assessment:

The evaluation is based on participating and performing Yoga, Pranayam and meditation regularly and perfectly under the guidance by Yoga Teachers in class as per schedule. Meditation trainers will observe - intrinsic goodness, right attitude and happy and joyous way of doing things.

Son/

Dean Academics

Head of the Mechanical Engineering Department

MABSC1003: Mathematics – II					
Teaching Scheme	Examination Scheme				
Lectures: 03 Hrs. / Week	ISE I	15 Marks			
Tutorial: 01 Hrs. / Week	ISE II	15 Marks			
Credits: 04	ISE III	10 Marks			
	End Semester Examination	60 Marks			

Course Description: MABSC1003: Engineering Mathematics II is a compulsory course for Civil Engineering, Mechanical Engineering, Computer Science & Engineering and Information Technology students.

Course Outcomes:

After completing the course students will able to

	Course Outcomes	Bloom's	Unit
		Taxonomy	
		Level	
CO1	Define first order first degree ordinary differential equations,	K1	1,2,3,4,5
	orthogonal trajectories; partial derivatives, Jacobian,		
	Directional Derivative, Gradients, Curl and divergence;		
	Multiple integrals; Fourier Series.		
CO2	Summaries the First order First degree Linear Differential	K2	1,2,3,4
	Equations; Partial, Total Derivatives; methods of solving		
	Multiple Integrals; Fourier Series and Half Range Fourier		
	series Expansion.		
CO3	Identify Order of Differential Equation and exactness;	K2	1,2,4,5
	Homogeneous function, Gradient, Divergence and Curl;		
	Even and odd functions, Euler's coefficients for the Fourier		
	Series.		
CO4	Solve the First order Linear Differential Equations,	K2	1,2,3,5
	Jacobians, Maxima and Minima of functions of two		
	variables; Double and Triple Integrations; vector integration		
CO5	Apply knowledge of Differential equation to different	K3	1,2,3,4,5
	Engineering Problems, Partial derivative; Multiple Integrals		
	to find area and volume of solids; surface integral and		
	volume integral using Green's theorem and Stoke's theorem,		
	Fourier Series to Harmonic Analysis.		

Detailed Syllabus:

Unit 1	First order ordinary differential equations and its applications
	Exact, linear and Bernoulli's equations, application of first order ordinary
	differential equations: orthogonal trajectories, simple electrical circuit,
	D'Alembert's principle, one dimensional conduction of heat.
Unit 2	Multivariate Calculus [Differentiation]
	Limit, continuity, partial derivatives, Euler's theorem on homogeneous functions,
	implicit functions, composite functions, total derivatives, Jacobians and their
	applications, error and approximations, maxima and minima of functions of two
	variables, saddle points, Lagrange's method of undermined multipliers.
Unit 3	Multiple integrals and its applications
	Double and triple integrals (Cartesian and polar), change of order of integration in

Son/une

BArel

	double integrals, change of variables (Cartesian to polar), applications: to find area
	and volume.
Unit 4	Fourier Series
	Fourier Series (Dirichlet's conditions), Periodic functions, convergence of the
	Fourier series, Euler's formula, Fourier series expansion with period 2π , 2L, Fourier
	series of even and odd functions, Half range sine and cosine series, applications to
	harmonic analysis.
Unit 5	Vector Calculus
	Directional Derivative, Gradients, Curl and divergence. Vector integration: Line
	integral, Surface integral and volume integral, Green's Theorem, Gauss Divergence
	Theorem and Stoke's Theorem.

Text and Reference Books

- 1. Erwin Kreyszing, Advanced Engineering Mathematics,10th Edition, Mumbai: Willey Eastern Ltd. 2015.
- 2. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, New Delhi: Khanna publication, 2017.
- 3. Ramana B. V. Higher Engineering Mathematics, 11th Reprint, New Delhi: Tata McGraw Hill, 2010.
- 4. David Poole, Linear Algebra: A Modern Introduction, 3rd Edition, USA: BROOKS/COLE CENGAGE Learning, 2011.
- 5. Ravish R. Singh, Mukul Bhatt, Engineering Mathematics- A tutorial approach, 4th Edition, New Delhi: Tata McGraw Hill Education Pvt. Ltd.2018.
- 6. Dass H.K. Advanced Engineering Mathematics, 22nd Edition, New Delhi: S. Chand publications, 2018.
- 7. P. N. Wartikar and J. N. Wartikar, A text book of Engineering Mathematics (Vol. 1 & 2), Reprint, Pune: Pune Vidhyarthi Griha Prakashan, 2013.

Assessment: ISEI, II, III (Class Test-1, Class Test-2, TA) & ESE TA: Students will perform one or more of the following activities

- 1. Surprise Test
- 2. Assignment using Mathematical tools like Mathematica/MATLAB or similar.
- 3. Quiz
- 4. Any other activity suggested by course coordinator

Assessment Pattern:

Assessment	Knowledge	ISE I	ISE II	ISE III	End Semester
Pattern Level	Level	(Class	(Class	(TA +	Examination
No.		Test-1)	Test-2)	Surprise	
				Test)	
K1	Remember	5	5		10
K2	Understand	10	10	2	38
K3	Apply			8	12
K4	Analyze				
K5	Evaluate				
K6	Create				
Total Marks 1	00	15	15	10	60

Son

Head of the Mechanical Engineering Department

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes	101	102	105	101	100	100	10,	100	107	1010	1011	1012
CO1	2	2	1									1
CO2	2	2	1									1
CO3	2	2	1									1
CO4	2	3	1		2							1
CO5	3	3	1		2							1

Mapping of Course outcomes with Program outcomes:

1-Low, 2-Medium, 3-High

Son Mare.

BArel Dean Academics

Head of the Mechanical Engineering Department

Approved in XXVIth Academic Council Dated: 27th April 2023

CHBSC1002: Battery Science, Lubricants and Green Chemistry									
Teaching Scheme	Examination Scheme								
Lectures: 03 Hrs. / Week	ISE I	15 Marks							
Credits: 03	ISE II	15 Marks							
	ISE III	10 Marks							
	End Semester Examination	60 Marks							

Course description: The course is mandatory course for first year B. Tech. Civil Engineering, Mechanical Engineering and Electrical Engineering programs in first semester. The course objective is to teach fundamental principles in Chemistry and relate the understanding to applications.

Course Outcomes:

After completing the course students will able to

	Course Outcomes	Bloom's Taxonomy Level
CO1	To understand fundamental of Chemistry relevant to Engineering field.	K1
CO2	To differentiate between primary and secondary battery as well as battery and fuel cell.	K2
CO3	To equipped with basic knowledge of polymer reinforced composites, applications of semiconductor conducting polymers in energy harnessing.	K2
CO4	To understand Basic Principals of Green chemistry for minimizing waste.	K1
CO5	To apply the principles of water softning to hard water and understand consequence of water quality degradation.	К3

Detailed Syllabus:

	Course Contents	CO
Unit	Battery Science	CO1,
1	Introduction - Classification of batteries, Primary and secondary batteries,	CO2
	reserve batteries with examples, battery components and their role-	
	Characteristics of Battery. Batteries and their importance, basic requirements	
	for commercial batteries, construction, working and applications of Ni-Cd,	
	and Lithium ion battery, fuel Cells- Differences between battery and fuel cell,	
	electrical vehicle battery construction, working advantages and disadvantages	
	of EV Car.	
Unit	Electrochemistry	CO1,
2	Single electrode potential, sign convention, reversible and irreversible cells	CO2
	measurements, specific conductance, equivalent conductance, variation of	
	equivalent conductance with dilution, migration of ions Nernst equation and	
	application, determination of EMF of cell, applications of EMF series.	
	Chromatographic techniques	
	Basics and applications of chromatographic technique- thin layer	
	chromatography, flame photometry potentiometric titrations, conductometry,	
	PH metry	

BAreil Dean Academics

Son

Unit	Lubricants	CO1,								
3	Introduction, mechanisms of lubrication-fluid film, boundary film &	CO3								
	extreme pressure, types of lubricants-solid lubricants-molybdenum									
	disulphide, graphite. Liquid lubricants- vegetable, animal, mineral &									
	synthetic oils, semisolid lubricants, greases, lubricating emulsions- oil in									
	water, Water in oil, properties of lubricants & its significance- physical									
	properties and significances viscosity & viscosity index, flash & fire point,									
	cloud & pour point, acid value, saponification value, steam emulsification									
	Conducting Polymers: Definition- classification- intrinsic and extrinsic,									
	mechanism of conduction in doped poly acetylene -applications synthesis &									
	Composites: Basics of composites Composition and Characteristic									
	properties of composites. Types of Composites: Particle Fiber Reinforced									
	Structural applications									
	Nano materials: Introduction, fullerenes, carbon nano tubes, nano wires,									
	electronic and mechanical properties, synthesis of nano materials.									
	applications of nano materials-Catalysis, Electronics & Telecommunication.									
	Medicines. Energy sciences.									
Unit	Energy sciences & Green Chemistry:	CO1.								
4	Green Chemistry: Introduction- definition of green chemistry, need of	CO4								
	green chemistry, basic principles of green 12 principles of green chemistry									
	principles of green chemistry, waste minimization and atom economy,									
	reduction of materials and energy requirement, significance, concept of									
	sustainability, industrial applications of green chemistry									
	Fuels: Fuel- classification, characteristics of good fuel, comparison between									
	solid, liquid, gaseous fuel, alternative and non conventional fuels, calorific									
	value, low and high calorific value, units of calorific value, determination of									
	calorific value by Bomb calorimeter, fuel cells, solar cell and polymer cell,									
	hydrogen-oxygen fuel cell, advantages and applications.									
Unit	Water treatment:	CO1,								
5	Introduction, sources and impurities in water, portable water; meaning and	CO5								
	specifications (WHO standards), hardness of water types, determination of									
	hardness using EDTA titration and numerical, softening of hard water by ion-									
	exchange process. numerical problems on hardness of water, biological									
	oxygen demand (BOD) and chemical oxygen demand (COD), determination									
	of COD of industrial waste water, purification of water for town supply,									
	principal wastage treatment – industrial waste water									

Text and Reference Books

- 1. F. W. Billmeyer, Text Book of Polymer Science, John Wiley & Sons, 15th Edition, 2020.
- 2. B. K. Sharma- A text book of Industrial Chemistry. 15th Edition, 2020. G.A. Ozin & A.C. Arsenault, "Nanotechnology A Chemical Approach to Nanomaterials". RSC Publishing, 5th Edition, 2020.
- 3. Uppal M.M, Jain and Jain. Engineering Chemistry, Khanna Publishers, 45th Edition, 2020.
- 4. P.C. Jain and Monica Jain, A test Book of Engineering Chemistry, Dhanpat Rai Publications, New Delhi, 20th Edition, 2020.

BArel Dean Academics

45

Son/

5. S. S. Dara - A Text book of Engineering Chemistry, S Chand & Company Ltd., 15th Edition, 2020.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	3	2	2	2		1	1					1
CO2	3	1	1	1								1
CO3	3	2	2	2		1	1					1
CO4	3	2	2	2	2	1	1					1
CO5	3	2	2	2		1	1					1

Mapping of Course outcomes with Program outcomes:

1 - Low, 2 - Medium, 3 - High

Son

BArel

Dean Academics

Head of the Mechanical Engineering Department

Approved in XXVIth Academic Council Dated: 27th April 2023

CHBSC1003: Lab Chemistry										
Teaching Scheme	Examination Scheme									
Practical: 02 Hrs / Week	ISE III	25 Marks								
Credit: 01										

Course Outcomes:

After completing the course students will able to

	Course Outcomes										
CO1	Perform qualitative and quantitative determination of physical and chemical										
	properties of lubricants, polymers and water used for domestic and industrial										
	application.										
CO2	Explain the objectives of experiments, perform the experiments, appropriately record										
	the data and analyze the results with accuracy and precision.										
CO3	Demonstrate laboratory skills by use of relevant instrument or modern analytical										
	methods for analysis of chemical compounds.										
CO4	Work effectively and safely in a laboratory environment in teams as well as										
	independently.										
CO5	Recognize the issues of safety regulations, ethical, societal, economical and										
	environmental issues in the use of chemicals in their laboratory work.										

List of the Experiments:

The student shall perform any eight experiments of the following:

Sr.	Title of the Experiments	Skill /	СО
No.		Knowledge	
		Level	
1	Determination of hardness of water by EDTA method.	S3/K2	CO3, CO4,
			CO2
2	Determination of BOD and COD of water sample	S3/K2	CO3, CO5,
			CO2
3	Determination of Cell Constant.	S3/K2	CO3, CO2
4	Determination of Acid Value of lubricant.	S1/K1	CO1, CO5,
			CO2
5	Determination of chloride content of water by Mohr's method	S1/K1	CO1, CO5,
			CO2
6	Determination of Viscosity of lubricating oils by	S3/K2	CO3, CO4,
	Redwood Viscometer.		CO2
7	Determination of Flash & Fire point of lubricant oil.	S3/K2	CO3, CO4,
			CO2
8	To Determination P ^H value of solutions by indicator, Paper	S1/K1	CO3, CO5,
	and by P ^H meter		CO2
9	Preparation of Phenol Formaldehyde Resin (Bakelite) /Urea	S2/K2	CO2, CO4,
	formaldehyde resin.		CO5
10	Determination of Iron by colorimetric method.	S3/K2	CO3, CO2
11	Separation of chemicals by thin layer chromatography.	S2/K2	CO3, CO2
12	Dermination of strength of acids by Potentiometric titrations	S2/K2	CO1, CO4,
			CO5, CO2
13	Determination of Cloud & Pour point of lubricant oil.	S3/K2	CO3, CO2
14	To verify Lambert Beer's Law calorimetrically.	S3/K2	CO3, CO2
15	To determine Rf value and identify phenyl alanine &	S3/K2	CO3, CO2

BAril

Son vne.

-				
		Glycine mixture by ascending paper chromatography.		
	16	Demonstration Of TLC/Paper chromatography	S2/K2	CO3, CO2
	17	To determine conduct metrically, the strength of given HCl	S3/K2	CO3, CO2
		solution by titrating with standard NaOH solution.		
	18	To determine the empirical formula of ferric-5 sulpho	S3/K2	CO3, CO2
		salicylate complex by Jobs method.		

Mapping of Course outcomes with Program outcomes:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	1											
CO2	1			1	1		1	2			1	
CO3	1	2	2	2	3	2	1		2			2
CO4	2	3	1	3	2	1						2
CO5	1	2	2		3	1				2		2

1-Low, 2-Medium, 3-High

Son/Vne

BAril

Head of the Mechanical Engineering Department

Dean Academics

AMESC1001: Engineering Mechanics									
Teaching Scheme Examination Scheme									
Lectures: 03 Hrs / Week	ISE I	15 Marks							
Credits: 03	ISE II	15 Marks							
	ISE III	10 Marks							
	End Semester Examination	60 Marks							

Prerequisites: Knowledge of vectors and scalars and preliminary knowledge of motion.

Course Description: Engineering Mechanics is one of the basic subjects for the students of engineering, irrespective of their branches, since it helps them to develop the logical thinking, analytical ability and enhance the imagination power. It introduces the students to various types of forces, their resultant, equilibrium of forces, analysis of various force system and the effect of forces on the state of motion of the body. Students will be exposed to C.G. and M.I. of the area and mass M.I. of the bodies. They will also be exposed to dynamics of particle and rigid body.

Course Outcomes:

After completing the course students will able to

	Course Outcomes						
CO1	State and explain the relevant laws of statics and dynamics.						
CO2	Determine resultant, identify the force system acting on bodies and perform static						
	analysis of a given system.						
CO3	Determine the member forces of a truss. Determine the centroid and compute moment						
	of inertia of area and center of gravity and mass moment of inertia of regular bodies.						
CO4	Establish relations between kinematic parameters for different types of motion and						
	compute the motion characteristics.						
CO5	Apply the principles of kinetics to compute the motion parameters or related forces of						
	a given system.						

Detailed Syllabus:

Unit 1	Fundamental Concepts, Forces and their Resultant: Fundamental Concepts and									
	Principles, Types of Force systems, Composition and Resolution of Forces, Moment									
	of force, Couple, Resultant of Planar and Spatial force systems, Analytical and									
	Graphical methods.									
Unit 2	Equilibrium of Forces and Friction: Free body diagrams, Equations of									
	Equilibrium, Types of Supports and support reactions, Equilibrium of Co-planer									
	force systems, Applications to beams and frames, Equilibrium of non-coplanar									
	concurrent force systems. Theory and Laws of Friction, Cone of friction, wedge									
	friction, rolling friction, Belt friction and their applications.									
Unit 3	C.G. and M.I. of Plane Sections and Regular Bodies: Centroid of Plane figures									
	and lines, Moment of Inertia of plane sections, Transformation theorems, Radius of									
	gyration, Centre of gravity and Mass Moment of Inertia of regular bodies.									
Unit 4	Kinematics of particles: Rectilinear Motion, Equations of Motion, Motion curves									
	and their applications, Curvilinear motion in Cartesian and Polar coordinates,									
	Motion of projectile, Relative motion, Fixed axis rotation.									
Unit 5	Kinetics of particles:									
	Newton's laws of Motion, D'Alembert's Principle, Equations of motion of particle									
	and rigid body, motion of connected bodies, Fixed axis rotation.									

Son/~

BAril

Principle of work and Energy, Principle of Impulse and Momentum and their
applications to particles, Direct central impact.

Text and Reference Books

- 1. Beer and Johnston, Mechanics for Engineers (Statics and Dynamics), McGraw Hill Co. Ltd.
- 2. A. K. Tayal, Engineering Mechanics, Umesh publications.
- 3. V. S. Mokashi Engineering Mechanics Vol. I and II, Tata McGraw Hill Publishing Co. Ltd., New Delhi.
- 4. S. S. Bhavikutti and K.G. Rajashekarappa, Engineering Mechanics, New Age International (P) Limited Publishers, New Delhi.
- 5. F. L. Singer, Engineering Mechanics, Harper and Row Publishers, USA
- 6. Timoshenko and Young, Engineering Mechanics, McGraw Hill Co. Ltd.
- 7. R. C. Hibbeler, Engineering Mechanics (Statics and Dynamics), McMillan publications
- 8. McLean and Nelson, Engineering Mechanics, Schaum's Outline Series, McGraw Hill Co. Ltd. New Delhi

Assessment: 1) For assessment under ISE-I and ISE-II, two test of 15 marks each, Test-I and Test-II, will be conducted on prescribed syllabus (around first 1.5 to 2 Units for Test-I and 3^{rd} and some portion of 4^{th} Unit for Test-II).

2) Under ISE-III- Teachers Assessment of 10 marks may be based on one or more of the following

- i. Technical quizzes.
- ii. Assignments-Numerical solution.
- iii. Punctuality.

Assessment Pattern:

Assessment	Knowledge	ISE I	ISE II	ISE III	End Semester
Pattern Level	Level				Examination
No.					
K1	Remember	02	02		06
K2	Understand	03	03	02	10
K3	Apply	10	10	08	44
K4	Analyze				
K5 Evaluate					
K6	Create				
Total Marks 1	00	15	15	10	60

Assessment table:

Assessment Tool	K1, K2	K3	K2, K3	K3	K3
	CO1	CO2	CO3	CO4	CO5
ISE I (15 Marks)	05	10	-	-	-
ISE II (15 Marks)	02		09	04	
ISE III (10 Marks)	02	02	02	02	02
ESE Assessment (60 Marks)	12	12	12	12	12
Total Marks 100	21	24	23	18	14

Son/"

BAred Dean Academics

Approved in XXVIth Academic Council Dated: 27th April 2023

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes		_		_							_	_
CO1	3	2	2									
CO2	3	3	2									
CO3	3	2	2									
CO4	3	3	2									
CO5	3	3	2									

Mapping of Course outcomes with Program outcomes:

1-Low, 2-Medium, 3-High

Son/une.

Bhil

Dean Academics

Head of the Mechanical Engineering Department

Approved in XXVIth Academic Council Dated: 27th April 2023

AMESC1003: Lab Engineering Mechanics								
Teaching SchemeExamination Scheme								
Practical: 02 Hrs / Week	ISE III	25 Marks						
Credit: 01								

Course Outcomes:

After completing the course students will able to

	Course Outcomes									
CO1	Apply graphical method to solve problems of statics.									
CO2	Demonstrate the principles of Engineering Mechanics experimentally and interpret									
	the experimental results.									
CO3	Solve numerical examples in statics and dynamics.									

List of the Experiments:

The student shall use graphical method to solve the problems of engineering mechanics (Sr. No. 1) and perform the experiments given below. They should also complete the tutorial problems of the subject Engineering Mechanics given by the teacher as a part of laboratory work.

Sr.	Title of the Experiments	Skill /	CO	Marks
No.		Knowledge		for
		Level		ISE
1	Graphical solutions for the following problems	K2, K3	CO1	
	a. Resultant of Coplanar Non-Concurrent force system:			
	i. At least one problem with resultant as a force			
	ii. At least one problem with resultant as a couple			
	b. Equilibrium of Coplanar Non-Concurrent force			
	system: At least one Problem			
	c. Friction: At least one Problem			
2	Following experiments shall be conducted.,	Kl, K2, K3	CO2	
	a. Polygon law of forces			
	b. Law of moments			
	c. Jib crane			
	d. Beam reaction			
	e. Friction			
	f. Screw jack			
	g. Fly wheel			
3	Tutorial Problems	K1, K2,	C03	
	a. At least three problems on each unit of the theory	K3		
	course of Engineering Mechanics.			
	b. The tutorial problem needs to be solved by the student			
	during the practical hours only.			

Assessment: ISE-III: Assessment will be based on understanding of theory/experiment, the performance of practical, completion of term work, completion of tutorial problems, participation in group activity etc.

Son/

Head of the Mechanical Engineering Department Dea

Dean Academics

Assessment Pattern:

Assessment	Knowledge	ISE III
Pattern Level	Level	
No.		
K1	Remember	05
K2	Understand	10
K3	Apply	10
K4	Analyze	-
K5	Evaluate	-
K6	Create	-
Total Marks		25

Mapping of Course outcomes with Program outcomes:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	3	1	1									
CO2	3	2	2	1	1							
CO3	3	2	2									

1-Low, 2-Medium, 3-High

Son vne.

Bhul Dean Academics

MEESC1003: Design Thinking									
Teaching Scheme	Examination Scheme								
Lectures: 02 Hrs / Week	ISE I	10 Marks							
Credits: 02	ISE II	10 Marks							
	End Semester Examination	30 Marks							

Course Objectives:

- 1. To Understand the concepts of design thinking approaches
- 2. To Create design thinking teams and conduct design thinking sessions
- 3. To provide a social and thinking space for the recognition of innovation challenges and the design of creative solutions.
- 4. To propose a concrete, feasible, viable and relevant innovation project/challenge

Course Outcomes:

After completing the course students will able to

	Course Outcomes								
CO1	Describe design thinking process								
CO2	Explain stages of design thinking								
CO3	Interpret different inventive problem-solving theories								
CO4	Apply prototype development process for a product								

Detailed Syllabus:

Unit 1	Overview of Design Thinking Process:	CO1
	Understanding the Learning Process, Kolb's Learning Styles, Assessing	
	and Interpreting, Design Thinking Process: Business context of innovation	
	for applying design thinking, two models of design thinking, phases of	
	design thinking.	
Unit 2	Design thinking and its approaches:	CO2
	Definition of Design Thinking, Need for Design Thinking, Objective of	
	Design Thinking, Origin of design thinking, understanding design thinking	
	and its process model, Human-Centered Design (HCD) process -	
	Empathize, Define, Ideate, Prototype and Test and Iterate or Empathize,	
	Analyze, Solve and Test.	
Unit 3	Analyze or Define	
	Root cause analysis, conflict of interest, perspective analysis, big picture	CO3
	thinking through system operator, big picture thinking through function	
	modelling Silent brainstorming, metaphors for ideation, CREATE and	
	What-If tool for ideation, introduction to TRIZ, Inventive principles and	
	their applications	
Unit 4	Test (Prototyping and Validation)	
	What is Prototype? Why Prototype? Rapid Prototype Development	CO4
	process, Testing, Sample Example, Test Group Marketing Prototyping,	
	Assumptions during the design thinking process, Validation in the market,	
	best practices of presentation. (Only procedure of validation to be taught)	

BArel

Dean Academics

Text and Reference Books

- 1. Bala Ramadurai, "Karmic Design Thinking", First Edition, 2020.
- 2. E. Balaguruswamy, "Developing Thinking Skills (The way to Success)", Khanna Book Publishing Company, (2022).
- 3. Vijay Kumar,"101 "Design Methods: A Structured Approach for Driving Innovation in Your Organization".
- 4. IDEO ,"Human-Centered Design Toolkit: An Open-Source Toolkit to Inspire New Solutions in the Developing World", IDEO 2011.
- 5. Marc Stickdorn and Jakob Schneider," This is Service Design Thinking: Basics, Tools, Cases", BIS Publishers, 2014.
- 6. Ulrich, Karl T. Design: Creation of artifacts in society, 2011.
- 7. Tim Brown "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", Harper Collins, 2009.

Useful Links

- 1. https://onlinecourses.nptel.ac.in/noc22_mg32/preview By Prof. Bala Ramadurai/ IIT Madras
- 2. https://youtu.be/4nTh3AP6knM
- 3. https://www.tutorialspoint.com/design_thinking/design_thinking_introduction.htm

mapping of course outcomes with regram outcomes.												
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	2					1						
CO2	2											
CO3	2	1										
CO4	1	1	1	1								

Mapping of Course outcomes with Program outcomes:

1-Low, 2-Medium, 3-High

Son

Head of the Mechanical Engineering Department

Dean Academics

MEESC1004: Lab Design Thinking									
Teaching Scheme	Examination Scheme								
Practical: 02 Hrs / Week	ISE III	25 Marks							
Credit: 01									

Course Outcomes:

After completing the course students will able to

	Course Outcomes										
CO1	Compare various design thinking stages										
CO2	Recognize new ways of creative thinking, innovation cycle of Design Thinking										
	process for developing innovative products.										
CO3	Prepare empathy map and journey map for product design										
CO4	Apply innovative theories for creating new prototypes products										

List of the Experiments:

Students has to perform Minimum Six Experiments out of the given list

Sr.	Title of the Experiments	CO
No.		
1	Understanding of Design Thinking and its process model, Principles, and	CO1
	tools. (Activity: Design a mind map for processes of design thinking).	
2	How to Empathize, Role of Empathy in design thinking, Empathy Maps	CO1
	Design. (Activity: Construct empathy maps to provide right solution to any	
	challenges through interviews, GD, observations, and other sources).	
3	Methods for Empathetic Design, Creation of User Personas. (Activity:	CO2,
	Construct Persona profile which includes user information).	CO3
4	Customer Journey Mapping (Activity: Develop customer journey map to	CO3
	provide a roadmap visual of customers experience).	
5	Problem clarification, Understanding of the problem. (Activity: Construct	CO1
	worksheet for customer journey map to select best route).	
6	Problem analysis and Reformulation of the problem. (Activity: Generate	CO2
	summarized report for customer journey map).	
7	Case Study - students can pick one idea from their brainstorm list and use the	CO2
	"Sketch Prototype Worksheet" to sketch out their solution for their classmate.	
8	Root Causes Analysis, Conflict of Interest, Description of customer need.	CO4
9	Design Cash Flow Diagram and Value Chain Analysis Diagram for weekly	CO2
	expenditure of person. (Case Study)	
10	Apply the iterations in design thinking process and create prototype	CO4

Mapping of Course outcomes with Program outcomes:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	1	2										
CO2	1	1										
CO3	1	1			1	1			2			
CO4	1	2	1		1	1			2			

1 – Low, 2 – Medium, 3 – High

Son vne.

BArel

MEPCC1001: Basics of Mechanical Engineering									
Teaching Scheme Examination Scheme									
Lectures: 02 Hrs / Week	ISE I	10 Marks							
Credits: 02	ISE II	10 Marks							
	End Semester Examination	30 Marks							

Course Description: After completing this course student will have a fundamental understanding of the thermodynamics, thermal machine source of energy, power transmission elements, identify manufacturing process and machines

Course Outcomes:

After completing the course students will able to

	Course Outcomes									
CO1	Explain basic concepts to be used in Mechanical Engineering									
CO2	Apply the principles of thermodynamics to solve numerical problems									
CO3	Compare the working principles of Energy conversion devices with their application									
	in Mechanical Engineering									
CO4	Explain the working principles and basic operating safety procedures of various									
	transmission elements employed in Mechanical Engineering.									

Detailed Syllabus:

Unit 1	Fundamentals of Thermodynamics
	Pressure and pressure measurement, Temperature, Forms of energy, work transfer,
	heat transfer, Laws of thermodynamics, First law for cyclic and non-cyclic process,
	Concept of Heat Engine, Heat pump, Statement and explanation of Fourier's law of
	heat conduction, Overall heat transfer coefficient, Newton's law of cooling, Stefan
	Boltzmann's law, Concept of heat exchanger, types of heat exchanger, and concept
	of effectiveness.
Unit 2	Energy Conversion Devices
	Steam generation process, Boiler: Mountings and accessories, working principles
	of Internal combustion Engine, two stoke and four stroke engines, Refrigeration –
	Definitions – Refrigerating effect, Ton of Refrigeration, COP, Relative COP, unit
	of Refrigeration, Refrigerator. Principle and working of vapor compression
	refrigeration Principles and working of steam power plant and nuclear power plant.
Unit 3	Fundamentals of Power Transmitting Elements and Mechanism
	Working principles of shaft, Axle and Spindles. Friction clutches, Brakes – types of
	brakes, Couplings-types of couplings, Bearing- types of bearing, Drives- Belt drive:
	Flat and V belt drive, Open and Cross belt drive, Chain drive, Gears- classification
	of gears, Simple mechanism: Slider crank mechanism, Pendulum pump, Oscillating
	cylinder engine, Whitworth quick return mechanism
Unit 4	Fundamentals of Manufacturing Process
	Fundamentals of manufacturing process and their application, Casting, forging,
	soldering, Brazing and welding. Differences between soldering, brazing and
	Welding. Description of Electric Arc Welding and Oxy-Acetylene Welding,
	Adhesives.

Son Ne

Bhil

Dean Academics

Head of the Mechanical Engineering Department D Approved in XXVIth Academic Council Dated: 27th April 2023

Text and Reference Books

- 1. Nag P.K., "Engineering Thermodynamics", 3rd ed. Tata-McGraw Hill Publications, 2013.
- 2. Rajput R.K., "Engineering Thermodynamics", 4th ed. Laxmi Publications, 2014.
- 3. Hajra Choudhary, Bose, "Work Shop Technology (Vol.-I &JI)", 3rd ed. MPP publication, 2018.
- 4. Bhandari V.B., "Machine Design ", 3rd ed. Tata-McGraw Hill Publications, 2019.
- 5. Khurmi R.S., "Machine Design ",4th Edition. Eurasia Publishing House, 2019.
- 6. Domkundwar V.M. "Engineering Thermodynamics", 4th ed. Dhanpat Rai Publication, 2020.
- 7. Rao P.N, "Manufacturing Technology Volume J", 3rd ed. Tata-McGraw Hill Publications, 2019
- 8. Holman J. P., "Heat transfer", McGraw Hill Publishing, New York

Mapping of Course outcomes with Program outcomes:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	1											
CO2	2	1										
CO3	1											
CO4	1											
CO5	1						1					

1 - Low, 2 - Medium, 3 - High

Son/une

BAril

Dean Academics

MEVSE1001: Workshop Practice - I						
Teaching Scheme Examination Scheme						
Practical: 04 Hrs / Week	ISE III	50 Marks				
Credit: 02						

Course Description: Objective of this course is to provide an insight and inculcate the essentials of workshop to the students of Mechanical Engineering discipline and to provide the students an illustration of the significance of the workshop practices. In this course the students will have to prepare jobs as mentioned in the curriculum.

Course Outcomes:

After completing the course students will able to

	Course Outcomes								
CO1	Explain various basic tools and measuring instruments used in workshop trades along								
	with safety practices								
CO2	Operate various measuring instruments and tools used in carpentry, fitting, plumbing								
CO3	Practice hands-on exercises on carpentry, fitting, plumbing trade to improve the								
	knowledge and the skill sets.								
CO4	Explain power tools used in Carpentry, Fitting, plumbing with required safety								
	measures.								

List of the Experiments:

Sr.	Title of the Experiments
No.	
1	Introduction – Safety, Basics tools, measuring instruments used in workshop, different
	subsections, information of lathe CNC, universal wood working machine, welding etc.
2	Plumbing - Basic tools, work holding devices, marking tools, measuring tools, cutting
	tools, finishing tools, one job consisting of PVC and UPVC items and one job of
	external threading
3	Fitting - Basic tools, power saws, work holding devices, marking tools, measuring
	tools, cutting tools, finishing tools, various operations, safe work practices, power tools.
	One job per student on blanking, drilling, fitting involving sawing and marking
4	Carpentry - Basic tools, work holding devices, marking tools, measuring tools, cutting
	tools, finishing tools, various operations on wood working lathe, power tools and safe
	work practices. Fabrication of one job per student involving planning, cutting, drilling,
	surface finishing etc.
5	One group project on plumbing and fitting for a team consisting of maximum 04
	students or any other value-added project consisting of engineering manufacturing
6	One group project on carpentry for a team consisting of maximum 04 students or any
	other value-added project consisting of engineering manufacturing
7	Electrical and electronics measuring devices such as multimeter, Oscilloscope etc
8	Electrical circuit making on a board
9	Use of breadboard

Son

Bheil

Dean Academics

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	1	1			1							
CO2	3	2			2				1			
CO3	3	2			2				1			
CO4	2				2							

Mapping of Course outcomes with Program outcomes:

1 – Low, 2 – Medium, 3 – High

Son vne.

BArel

Dean Academics

MEIKS1001: Indian Metallurgy							
Teaching Scheme Examination Scheme							
Lectures: 02 Hrs / Week	ISE I	10 Marks					
Credits: 02	ISE II	10 Marks					
	End Semester Examination	30 Marks					

Course Description: Engineering student should be conversant with the ferrous and nonferrous engineering materials. This course will give the student a feel of the associated properties of the product being studied. This course aims at developing an attitude of the student and preparing a basement for dealing with various properties and application of various materials.

Course Outcomes:

After completing the course students will able to

Course Outcomes						
CO1	Understand the ancient concept of metal making					
CO2	Gain knowledge about ancient and pre modern mining and manufacturing					
CO3	Gain knowledge about the Indian iron and steel					

Detailed Syllabus:

Unit 1	Vedic references to metals and metal working.
	Mining and manufacture in India of Zinc, Iron, Copper, Gold, etc., from ancient
	times. Indian texts which refer to metallurgy.
Unit 2	Important specimens of metal workmanship preserved/found in different parts of
	India.
	The significance and wide prevalence of ironsmith and other metal workers in the
	pre-modern era.
Unit 3	European observers on the high quality and quantity of Indian iron and steel in the
	18/19th centuries.

Text and Reference Books

- 1. Ancient Indian Metallurgy: Theory and Practice, Ashoka K. Mishra, 2009
- 2. Mining and Metallurgy in Ancient India, Rina Shrivastava.
- 3. A History of Metallurgy in India, Gurprit Singh
- 4. Ancient Indian Metallurgy, Ashoka Kumar Mishra
- 5. Introduction to the Thermodynamics of Materials by David R. Gaskell
- 6. Materials Science and Engineering by Raghavan V

Assessment:

ISE I: Shall be on the basis of Class Tests/ Assignments/ Quizzes/ Field visits/Presentations/ Course Projects on first unit.

ISE II: Shall be based on class test on second unit.

Son/~~

Dean Academics

Assessment Pattern:

Assessment Pattern	Knowledg eLevel	Knowledg ISE I ISE II eLevel		ISE III TA	End Semester
LevelNo.					Examination
K1	Remember	3	3		6
K2	Understand	3	3		6
K3	Apply	4	4		12
K4	Analyze				6
K5	Evaluate				
K6	Create				
Total Marks 5	50	10	10	0	30

Assessment table:

Assessment Tool	K1, K3	K2, K3	K3, K4
	CO1	CO2	CO3
ISE I (10 Marks)	5	5	
ISE II (10 Marks)		5	5
ESE Assessment (30 Marks)	10	10	10
Total Marks 50	15	20	15

Mapping of Course outcomes with Program outcomes:

Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1				3							
CO2		2		1						2		
CO3		1		1								

1 – Low, 2 – Medium, 3 – High

Son vne. Bhil

INCCC1002: NSS / INCCC1003: Sports / INCCC1004: Club Activities						
Teaching Scheme Examination Scheme						
Practicals: 04 Hrs. / Week	ISE III	50 Marks				
Credits: 02						

Course Description: Co-curricular activities are activities that take place outside of a course's curriculum but are related to academics in some way. Although involvement is not part of classroom instruction, it does supplement and enhance a student's academic experience.

NSS: Aim of NSS activities to Gain skills in mobilizing community participation; To acquire leadership qualities and democratic attitude; To develop the capacity to meet emergencies and national disasters; To practice national integration and social harmony. Types of Activities are not limited to Cleaning, Plantation, Blood Donation Camps, Awareness Rallies, Health Care Camps, Stage shows or a procession creating awareness of such issues as social problems, education and cleanliness but decided by Institute NSS Coordinator. Students will participate in NSS Activities throughout semester.

The evaluation is based on participation in regular NSS activities. NSS Coordinator along with departmental NSS coordinator will certify at the end of semester about participation. Program head will notify the exam section about awarding credits to the students.

Sports activity: Sporting Activities means performing or participating in the Sport in any capacity which includes, but is not limited to, participation in training, competitions, coaching or as an official.

Students will participate in Sports Activities throughout semester. Gymkhana vice president will coordinate along with sports coordinator of department. The coordinators will certify at the end of semester about participation. Program head will notify the examination section about awarding credits to the students. The evaluation is based on participation in regular sports activities.

Club activities: Government Engineering College Aurangabad has various clubs that focus on specific interests such as robotics, coding, literature, environment, etc. These clubs often organize events, workshops, and competitions that provide students with opportunities to learn new skills and showcase their talents. Students will participate in Club Activities throughout semester. Faculty coordinators will coordinate along with students bodies the activities of club.

The faculty coordinators will certify at the end of semester about participation of students. Program head will notify the examination section about awarding credits to the students.

Dean Students affairs and all program heads will formulate additional modalities for smooth conduction of cocurricular activities as and when required.

Son Mare

Dean Academics

MEINT1001: Internship						
Teaching Scheme Examination Scheme						
Practical: 16 Hrs / Week	ISE III	100 Marks				
Credit: 08	End Semester Examination	100 Marks				

Course Objectives:

Internship provides an excellent opportunity to learner to see understand the conceptual aspects learned in classes and deployed into the practical world. Industry/on project experience provides much more professional experience as value addition to classroom teaching.

- 1. To encourage and provide opportunities for students to get professional/personal experience through internships.
- 2. To learn and understand real life/industrial situations.
- 3. To get familiar with various tools and technologies used in industries and their applications.
- 4. To nurture professional and societal ethics.
- 5. To create awareness of social, economic and administrative considerations in the working environment of industry organizations.

Course Outcomes:

After completing the course students will able to

	Course Outcomes					
CO1	DEMONSTRATE professional competence through industry internship.					
CO2	CHOOSE appropriate technology and tools to solve given problem.					
CO3	DEMONSTRATE abilities of a responsible professional and use ethical practices in					
	day-to-day life.					

Guidelines:

Engineering internships are intended to provide students with an opportunity to apply conceptual knowledge from academics to the realities of the field work/training. The following guidelines are proposed to give academic credit for the internship undergone as a part of the Exit Criteria for First Year B. Tech. (Mechanical Engineering) curriculum.

Duration:

The internship shall have 08 credits, minimum 16 hours per week interaction for a duration of 02 months.

Internship work Identification:

Student may choose to undergo Internship at Industry/Govt. Organizations/ NGO/ MSME/ Rural Internship/ Innovation/IPR/Entrepreneurship. Student may choose either to work on innovation or entrepreneurial activities resulting in start-up or undergo internship with industry/ NGO's/Government organizations/Micro/Small/ Medium enterprises to make themselves ready for the industry.

Student shall take guided internship in a strict supervision of Academic Guide (Preferably Mentor of Teacher Guardian Scheme) and Industrial Supervisor. The internship shall inculcate skills to the incumbent which will facilitate earning livelihood. These skill sets shall be close to vocational education level. Before assigning particular industry/research organization guide shall ensure compatibility of students, availability of internship in the proposed organization expected minimum three skill sets.

Internship work identification process should be initiated before the end of IInd semester in case of Exit criteria of First Year B. Tech. program in coordination with training and

Son/

Brich

placement cell/ industry institute cell/ internship cell. This will help students to start their internship work on time.

Internship Diary/ Internship Workbook:

Students must maintain Internship Diary/ Internship Workbook. The main purpose of maintaining diary/workbook is to cultivate the habit of documenting. The students should record in the daily training diary the day-to-day account of the observations, impressions, information gathered and suggestions given, if any. The training diary/workbook should be signed every day by the supervisor.

Internship Diary/workbook and Internship Report should be submitted by the students along with attendance record and an evaluation sheet duly signed and stamped by the industry to the Institute immediately after the completion of the training.

Internship Work Evaluation:

Every student is required to prepare and maintain documentary proofs of the activities done by him as internship diary or as workbook. The evaluation of these activities will be done by Program Head/Cell In-charge/ Project Head/ faculty mentor or Industry Supervisor based on- Overall compilation of internship activities, sub-activities, the level of achievement expected, evidence needed to assign the points and the duration for certain activities.

Assessment and Evaluation is to be done in consultation with internship supervisor (Internal and External – a supervisor from place of internship). Recommended evaluation parameters-Post Internship Internal Evaluation -100 Marks + Internship Diary/Workbook and Internship Report - 100 Marks.

Feedback from internship supervisor (External and Internal)

Post internship, faculty coordinator should collect feedback about student with recommended parameters include as- Technical knowledge, Discipline, Punctuality, Commitment, Willingness to do the work, Communication skill, individual work, Team work, Leadership...

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	1			1								
CO2		1	1									
CO3				1								

Mapping of Course outcomes with Program outcomes:

1 – Low, 2 – Medium, 3 – High

Son/

MEVSE1002: Computer Aided Drafting and Modeling					
Teaching Scheme	Examination Scheme				
Practical: 08 Hrs / Week	ISE III	50 Marks			
Credit: 04	End Semester Examination	50 Marks			

Course Description: The market driven economy demands frequent changes in product design to suit the customer's needs. With the introduction of computers, the task of modeling any complex part and incorporating frequent changes as per customer requirement are becoming simpler. Moreover, the technology driven competitive environment in today's market is compelling design/consulting engineering firms and manufacturing companies to seek CAD conversion of their existing paper-based engineering documents. The focus of this course is to provide the student with hands-on experience in drafting and editing of an industrial production drawing and making them competent in latest solid modeling and assembly practices.

Course Outcomes:

After completing the course students will able to

	Course Outcomes
CO1	Understand the CAD workspace and interface: Students will familiarize themselves
	with the different components of CAD software, such as toolbars, menus, and
	workspace layouts, gaining proficiency in navigating and using essential drawing
	tools.
CO2	Create 2D drawings: Students will learn to draw and modify 2D entities, including
	lines, arcs, circles, and polygons, employing precision techniques for accurate and
	detailed representations.
CO3	Dimensioning and annotation: Students will develop skills in adding dimensions and
	text annotations to their 2D drawings, enhancing clarity and communicative value in
	technical documentation.
CO4	Master 3D modelling: Students will delve into the principles of 3D modeling,
	employing extrusion, lofting, and revolving techniques to create intricate 3D models
	of objects and structures.
CO5	Assemble and present: Students will assemble multiple 3D models to create assembly
	drawings, applying constraints and mates to simulate real-world relationships and
	produce exploded views and section views for enhanced visual representation.

Underpinning Theory Components: The following topics/subtopics should be taught and assessed in order to achieving the COs to attain the identified competency.

Unit 1	Fundamentals of Computer Aided Drafting
	Fundamentals of Computer Aided Drafting (CAD) and its applications, Various
	Software for Computer Aided Drafting.
	Co-ordinate System- Cartesian and Polar Absolute, Relative mode, UCS, WCS.
	CAD initial setting commands - Snap, grid, Ortho, Osnap, Limits, Units, scale,
	Object tracking etc.
	Object Selection methods - picking, window, crossing, fence, last and previous.
	Open, save and close a new and existing drawing/template.
Unit 2	Draw and Modify Commands
	Zoom Commands - all, previous, in, out, extent, Realtime, dynamic, window, pan
	etc;
	Formatting commands - linetype, lineweight, color.
	Draw Command - Line, arc, circle, rectangle, polygon, ellipse, spline, block, hatch
	etc;

Sonpere

Head of the Mechanical Engineering Department

	Modify Command - Erase, trim, extend, copy, move, mirror, offset, fillet, chamfer,
	array, rotate scale, lengthen, stretch, breaks divide, explode and align.
	Grips editing - Move, Copy, Stretch.
Unit 3	Dimensioning, Text and Plot Commands
	Dimensioning commands – Create & modify Dimension styles, Dimensional
	Tolerances and geometrical Tolerances.
	Text commands - dtext. mtext command.
	Plotting a drawing - paper space, model space, creating table. Plot commands.
Unit 4	Working in 2D environment
	Introduction, features and applications of different software packages used for solid
	modeling. System requirement & compatibility with other software.
	Working in Sketcher mode - Line, Profile, Circle, Arc, curves, Rectangle and their
	sub options.
	Constraints – Dimensioning constraint, Geometrical constraint.
Unit 5	Part Modeling
	Working in 3D environment - Creating reference plane, creating 3D solid models
	of simple machine parts.
	3D Commands - Extrude, Revolve, Sweep, Pattern, Draft, loft and Blend or similar
	commands.
	Intersection of solids - Intersect two solid components by inserting new body
	option.
Unit 6	Assembly, Drafting & Plotting
	Assembly Drawing - Introduction to top down and bottom-up approach of
	assembly. Preparation of assembly drawing by using assembly features.
	Exploded view - Explode the assembly.
	Working in Drafting mode – Generate orthographic projections i.e., front view, top
	view, side view, sectional views, isometric views, auxiliary views.
	Dimensioning commands - Apply dimensions, dimensional and geometrical
	tolerances.
	Bill of material - Prepare part list table and name plate.
	Page set up. Plot command.

List of the Experiments:

Sr.	Title of the Experiments
No.	
1	Use customization tool bar of CAD software to customize main window and to do
	interfacing.
2	Prepare a template of your institute.
3	Draw given 2D entities (any two) individually using draw commands.
4	Draw given 2D entities (any two) and modify them individually using draw and edit
	commands.
5	Draw given views of hexagonal nut and Bolt (similar objects can be taken up) using
	Computer Aided Drafting software.
6	Draw given views of V-Groove Pulley, 2-Wheeler Piston (similar objects can be taken
	up) using Computer Aided Drafting software
7	Draw given views of Open-ended spanner, Deep groove ball bearing (similar objects
	can be taken up) using Computer Aided Drafting software.
8	Draw given views of flange coupling, universal coupling (similar objects can be taken
	up) using Computer Aided Drafting software.

BAril

Son/une.

9	Dimension the above drawings created in experiment No. 3 to 8.
10	Make blocks of hexagonal nut and bolt, Ball bearing and insert
11	Print any three drawings from above list along with the template of institute prepared.
12	Customize main window and interface of the 3D modeling software using customization tool bar.
13	Draw given 2D drawing using various draw commands. (Any two).
14	Apply geometrical and dimensional constraints to the drawing drawn in experiment No. 13
15	Draw given 2D complex drawing using various draw, edit, modify and dimension commands. (Any two)
16	Apply geometrical and dimensional constraints to the drawing drawn in experiment No. 15.
17	Create given part models using commands like Extrude, Revolve, Shell etc;
18	Create a given part using extrude and revolve feature like muff coupling, shaft etc;
19	Create given part models using commands like Mirror, Chamfer, Fillet, Rib, Pattern etc;
20	Develop given simple part models of Cotter joint and flange coupling.
21	Create a given simple part using commands like Sweep, Blend, Draft and loft or similar commands.
22	Develop given part models of machine vice, tool post or Universal coupling.
23	Develop complex part model of screw jack.
24	Apply assembly constraints like mate, align, insert in the given drawing.
25	Develop any one assembly from part models prepared in experiment no. 18 or 20. Apply assembly constraints.
26	Develop any one assembly from given part models prepared in experiment No. 22 or 23. Apply assembly constraints.
27	Create exploded view of the given assemblies.
28	Create a part drawing using drafting mode.
29	Generate orthographic views of prepared solid model part. Apply important dimensions.
30	Generate sectional views of solid model.
31	Generate orthographic views of prepared solid model assembly and prepare bill of material.
32	(a) Plot part drawing on A4 (Any one) (b) Plot assembly drawing on A3 (Any one)
	(0) I for assembly drawing on A5 (Any one)

Mapping of Course outcomes with Program outcomes:

suppling of course successions with regime succession												
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcomes												
CO1	1				2							
CO2		1			2							
CO3	1				2							
CO4				2	2							
CO5	1				2							

1 – Low, 2 – Medium, 3 – High

Son/une

BArel

Dean Academics

MEVSE1003: Programming and Problem Solving					
Teaching Scheme	Examination Scheme				
Practical: 08 Hrs / Week	ISE III	50 Marks			
Credit: 04	End Semester Examination	50 Marks			

Course Objectives: Prime objective is to give students a basic introduction to programming and problem solving with computer language Python. And to introduce students not merely to the coding of computer programs, but to computational thinking, the methodology of computer programming, and the principles of good program design including modularity and encapsulation.

- 1. To understand problem-solving, problem-solving aspects, programming and to know about various program design tools.
- 2. To learn problem solving with computers
- 3. To learn basics, features and future of Python programming.
- 4. To acquaint with data types, input output statements, decision making, looping and functions in Python
- 5. To learn features of Object-Oriented Programming using Python
- 6. To acquaint with the use and benefits of files handling in Python

Course Outcomes:

After completing the course students will able to

	Course Outcomes								
CO1	Inculcate and apply various skills in problem solving.								
CO2	Choose most appropriate programming constructs and features to solve the problems								
	in diversified domains.								
CO3	Exhibit the programming skills for the problems those require the writing of well								
	documented programs including use of the logical constructs of language, Python.								
CO4	Demonstrate significant experience with the Python program development								
	environment.								

Guidelines for Student's Lab Journal

The laboratory assignments are to be submitted by student in the form of journal. Journal consists of prologue, Certificate, table of contents, and handwritten write-up of each assignment (Title, Objectives, Problem Statement, Outcomes, software & Hardware requirements, Date of Completion, Assessment grade/marks and assessor's sign, Theory-Concept in brief, features of tool/framework/language used, Design, test cases, conclusion. Program codes with sample output of all performed assignments are to be submitted as softcopy.

As a conscious effort and little contribution towards Green IT and environment awareness, attaching printed papers as part of write-ups and program listing to journal may be avoided. Use of DVD containing students' programs maintained by lab In-charge is highly encouraged. For reference one or two journals may be maintained with program prints at Laboratory. **Use of open-source software and recent version is to be encouraged**. Suggested parameters for overall assessment as well as each lab assignment assessment include- timely completion, performance, innovation, efficient codes, punctuality and neatness.

Son/

Approved in XXVIth Academic Council Dated: 27th April 2023

List of the Experiments: Students has to perform any 18 experiments from the following list.

Stude	its has to perform any 18 experiments from the following list.
Sr.	Write Program in Python (with function/class/file, as applicable)
No.	
1	To calculate salary of an employee given his basic pay (take as input from user). Calculate gross salary of employee. Let HRA be 10 % of basic pay and TA be 5% of basic pay. Let employee pay professional tax as 2% of total salary. Calculate net salary payable after deductions.
2	To accept an object mass in kilograms and velocity in meters per second and display its momentum. Momentum is calculated as $e=mc^2$ where m is the mass of the object and c is its velocity.
3	To accept N numbers from user. Compute and display maximum in list, minimum in list, sum and average of numbers.
4	To accept student's five courses' marks and compute his/her result. Student is passing if he/she scores marks equal to and above 40 in each course. If student scores aggregate greater than 75%, then the grade is distinction. If aggregate is $60>=$ and <75 then the grade if first division. If aggregate is $50>=$ and <60 , then the grade is second division. If aggregate is $40>=$ and <50 , then the grade is third division.
5	To check whether input number is Armstrong number or not. An Armstrong number is an integer with three digits such that the sum of the cubes of its digits is equal to the number itself. Ex. 371.
6	To simulate simple calculator that performs basic tasks such as addition, subtraction, multiplication and division with special operations like computing x^y and $x!$
7	To accept the number and Compute a) square root of number, b) Square of number, c)
0	Cube of number d) check for prime, d) factorial of number e) prime factors
8	To accept two numbers from user and compute smallest divisor and Greatest Common Divisor of these two numbers.
9	To accept a number from user and print digits of number in a reverse order.
10	To input binary number from user and convert it into decimal number.
11	To generate pseudo random numbers.
12	To accept list of N integers and partition list into two sub lists even and odd numbers.
13	To accept the number of terms a find the sum of <i>sine</i> series.
14	To accept from user the number of Fibonacci numbers to be generated and print the Fibonacci series.
15	Write a python program that accepts a string from user and perform following string operations- i. Calculate length of string ii. String reversal iii. Equality check of two strings iv. Check palindrome v. Check substring
16	To copy contents of one file to other. While copying a) all full stops are to be replaced with commas b) lower case are to be replaced with upper case c) upper case are to be replaced with lower case.
17	To count total characters in file, total words in file, total lines in file and frequency of given word in file.
18	Create class EMPLOYEE for storing details (Name, Designation, gender, Date of Joining and Salary). Define function members to compute a) total number of employees in an organization b) count of male and female employee c) Employee with salary more than 10,000 d) Employee with designation "Asst Manager"
19	Create class STORE to keep track of Products (Product Code, Name and price). Display menu of all products to user. Generate bill as per order.

Son/vne

Bhil

Dean Academics

Approved in XXVIth Academic Council Dated: 27th April 2023

20	Calculator with basic functions. Add more functionality such as graphic user interface										
	and complex calculations.										
21	Program that simulates rolling dice. When the program runs, it will randomly choose a										
	number between 1 and 6 (Or other integer you prefer). Print that number. Request user										
	to roll again. Set the min and max number that dice can show. For the average die, that										
	means a minimum of 1 and a maximum of 6.										
22	Use raspberry pi/or similar kit and python for-										
	Room Temperature Monitoring System										
	Motion Detection System										
	Soil Moisture Sensor										
	Home Automation System										
	• A robot										
	• Smart mirror or a smart clock.										
	Smile Detection using Raspberry Pi Camera										
23	Guess Number: Randomly generate a number unknown to the user. The user needs to										
	guess what that number is. If the user's guess is wrong, the program should return some										
	sort of indication as to how wrong (e.g., the number is too high or too low). If the user										
	guesses correctly, a positive indication should appear. Write functions to check if the										
	user input is an actual number, to see the difference between the inputted number and										
	the randomly generated numbers, and to then compare the numbers.										
-											

Text and Reference Books

- 1. Reema Thareja, "Python Programming Using Problem Solving Approach", Oxford University Press, ISBN 13: 978-0-19-948017-6
- 2. R. Nageswara Rao, "Core Python Programming", Dreamtech Press; Second edition ISBN- 10: 938605230X, ISBN-13: 978-9386052308 ASIN: B07BFSR3LL
- R. G. Dromey, "How to Solve it by Computer", Pearson Education India; 1st edition, ISBN10:8131705625, ISBN-13: 978-8131705629 Maureen Spankle, "Problem Solving and Programming Concepts", Pearson; 9th edition, ISBN-10: 9780132492645, ISBN-13: 9780132492645
- 4. Romano Fabrizio, "Learning Python", Packt Publishing Limited, ISBN: 9781783551712,1783551712
- 5. Paul Barry, "Head First Python- A Brain Friendly Guide", SPD O'Reilly, 2nd Edition, ISBN:978-93-5213-482-3
- 6. Martin C. Brown, "Python: The Complete Reference", McGraw Hill Education, ISBN-10:9789387572942, ISBN-13: 978-9387572942, ASIN: 9387572943
- Jeeva Jose, P. Sojan Lal, "Introduction to Computing & Problem Solving with Python", Khanna Computer Book Store; First edition, ISBN-10: 9789382609810, ISBN-13: 9789382609810

Mapping of Course outcomes with Program outcomes:

mapping v	mapping of Course outcomes with Frogram outcomes:													
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
Outcomes														
CO1	1				2									
CO2		1												
CO3	1				2									
CO4				2	2									

1-Low, 2-Medium, 3-High

Son/

Dean Academic

Head of the Mechanical Engineering Department