# GOVT. COLLEGE OF ENGINEERING AURANGABAD



# CURRICULUM

# T. Y. B. Tech. (Mechanical Engineering) Department of Mechanical Engineering 2018-2019

# Structure for Third Year B. Tech. (Mechanical Engineering) (Full Time)

|     | SEMESTER- V |                                       |      |       |       |         |        |        |    |          |            |           |       |
|-----|-------------|---------------------------------------|------|-------|-------|---------|--------|--------|----|----------|------------|-----------|-------|
| Sr. | Code        | Subject Contact Continuous Evaluation |      |       |       |         |        |        |    | n in ter | ms of Mark | KS        |       |
| No. |             | , , , , , , , , , , , , , , , , , , , | Peri | od (H | [rs.) | Credits | Theory |        |    |          |            | Practical | Total |
|     |             |                                       | L    | Т     | Р     |         | C.T.I  | C.T.II | ТА | ESE      | TW         | /Viva     |       |
|     |             |                                       |      |       |       |         |        |        |    |          |            | Voce      |       |
|     | ME          |                                       |      |       |       |         | 15     | 15     |    |          |            | -         |       |
| 1.  | 3001        | Applied Mathematics                   | 3    | 0     | 0     | 3       |        |        | 10 | 60       | -          |           | 100   |
|     | ME          | Design of Machine                     |      |       |       |         | 15     | 15     |    |          |            | -         |       |
| 2.  | 3002        | Elements-I                            | 2    | 1     | 0     | 3       |        |        | 10 | 60       | -          |           | 100   |
|     | ME          |                                       |      |       |       |         | 10     | 10     |    |          |            | -         |       |
| 3.  | 3003        | Engineering Metallurgy                | 2    | 0     | 0     | 2       |        |        | 05 | 25       | -          |           | 50    |
|     |             |                                       |      |       |       |         |        |        |    |          |            | -         |       |
|     |             |                                       |      |       |       |         |        |        |    |          |            |           |       |
|     | ME          | Fluid Mechanics and                   |      |       |       |         |        |        |    |          |            |           |       |
| 4.  | 3004        | Hydraulics Machines                   | 3    | 1     | 0     | 4       | 15     | 15     | 10 | 60       | -          |           | 100   |
| _   |             | Professional Elective                 |      |       |       | _       | 15     | 15     |    |          |            | -         |       |
| 5.  | #           |                                       | 3    | 0     | 0     | 3       |        |        | 10 | 60       | -          |           | 100   |
|     | ME          | Lab -Design of Machines               | _    |       |       |         | -      |        |    |          |            | 25        |       |
| 6.  | 3010        | Ι                                     | 0    | 0     | 2     | 1       |        | -      | -  | -        | 25         |           | 50    |
|     | ME          | Lab-Engineering                       |      |       |       |         | -      |        |    |          |            | 25        |       |
| 7.  | 3011        | Metallurgy                            | 0    | 0     | 2     | 1       |        | -      | -  | -        | 25         |           | 50    |
|     | ME          | Lab- Fluid Mechanics                  |      |       |       |         | -      |        |    |          |            | 25        |       |
| 8.  | 3012        | and Hydraulic Machines                | 0    | 0     | 2     | 1       |        | -      | -  | -        | 25         |           | 50    |
|     | ME          | Lab –CAME II and Mini                 | _    |       |       |         | -      |        |    |          |            |           |       |
| 9.  | 3013        | Project                               | 0    | 0     | 2     | 1       |        | -      | -  | -        | 25         | 25        | 50    |
|     | HS          | Industrial Organization               | _    |       |       |         | 15     |        |    |          | -          | -         |       |
| 10  | 3001        | and management                        | 3    | 0     | 0     | 3       |        | 15     | 10 | 60       |            |           | 100   |
| 11. | \$          | Audit Course III                      | 0    | 0     | 2     | 0       | 0      | 0      | 0  | 0        | 0          | 0         | 0     |
|     |             |                                       |      |       |       |         |        |        |    |          |            |           |       |
|     |             | Total                                 | 16   | 2     | 10    | 22      | 85     | 85     | 55 | 325      | 100        | 100       | 750   |

# **Choice Based Credit System**

|     | SEMESTER- VI |              |        |      |        |    |        |          |        |        |            |             |      |  |  |           |       |
|-----|--------------|--------------|--------|------|--------|----|--------|----------|--------|--------|------------|-------------|------|--|--|-----------|-------|
| Sr. | Code         | Subject      | Con    | tact |        |    | Co     | ontinuou | s Eval | uation | in terr    | ns of Marks |      |  |  |           |       |
| No. |              | Ŭ            | Period |      | Period |    | Period |          | Period |        | The        | eory        |      |  |  | Practical | Total |
|     |              |              | (Hrs.) |      |        |    | r      |          |        | TW     | /Viva Voce |             |      |  |  |           |       |
|     |              |              | L      | Т    | P      |    | C.T.I  | C.T.II   | TA     | ESE    |            |             |      |  |  |           |       |
| 1.  |              | Heat and     |        |      |        |    | 15     | 15       |        |        |            | -           |      |  |  |           |       |
|     | ME           | Mass         |        |      |        |    |        |          |        |        |            |             |      |  |  |           |       |
|     | 3014         | Transfer     | 2      | 1    | 0      | 3  |        |          | 10     | 60     | -          |             | 100  |  |  |           |       |
| 2.  |              | Metrology    |        |      |        |    | 15     | 15       |        |        |            | -           |      |  |  |           |       |
|     | ME           | and Quality  | -      |      |        | -  |        |          |        |        |            |             | 100  |  |  |           |       |
|     | 3015         | Control      | 3      | 0    | 0      | 3  |        | 1.0      | 10     | 60     | -          |             | 100  |  |  |           |       |
| 3.  | ME           | Industrial   |        |      |        |    | 10     | 10       |        |        |            | -           |      |  |  |           |       |
|     | 3016         | Engineering  | 2      | 0    | 0      | 2  |        |          | 5      | 25     | -          |             | 50   |  |  |           |       |
| 4.  | ME           | Mechanical   |        |      |        |    | 10     | 10       |        |        |            | -           |      |  |  |           |       |
|     | 3017         | Measurement  | 2      | 0    | 0      | 2  |        |          | 5      | 25     | -          |             | 50   |  |  |           |       |
| 5.  |              | Professional |        |      |        |    | 15     | 15       |        |        |            | -           |      |  |  |           |       |
|     | #            | Elective IV  | 3      | 0    | 0      | 3  |        |          | 10     | 60     | -          |             | 100  |  |  |           |       |
| 6.  |              | Lab-Heat     |        |      |        |    | -      | -        |        |        |            | 25          |      |  |  |           |       |
|     | ME           | and Mass     |        |      |        |    |        |          |        |        |            |             |      |  |  |           |       |
|     | 3023         | Transfer     | 0      | 0    | 2      | 1  |        |          | -      | -      | 25         |             | 50   |  |  |           |       |
| 7.  |              | Lab-         |        |      |        |    | -      | -        |        |        |            | 25          |      |  |  |           |       |
|     |              | Metrology    |        |      |        |    |        |          |        |        |            |             |      |  |  |           |       |
|     | ME           | and Quality  |        |      |        |    |        |          |        |        |            |             |      |  |  |           |       |
|     | 3024         | Control      | 0      | 0    | 2      | 1  |        |          | -      | -      | 25         |             | 50   |  |  |           |       |
| 8.  |              | Lab-         |        |      |        |    | -      | -        |        |        |            | 25          |      |  |  |           |       |
|     | ME           | Mechanical   |        |      |        |    |        |          |        |        |            |             |      |  |  |           |       |
|     | 3025         | Measurement  | 0      | 0    | 2      | 1  |        |          | -      | -      | 25         |             | 50   |  |  |           |       |
| 9.  | ME           | Industrial   | 0      | 0    |        |    | -      |          |        |        | 25         | 25          | -    |  |  |           |       |
| 10  | 3026         | Interaction  | 0      | 0    | 2      | 1  | 1.7    | -        | -      | -      | 25         |             | 50   |  |  |           |       |
| 10. | *            | Open         | 2      | 0    | 0      | 2  | 15     | 15       | 10     | 60     |            | -           | 100  |  |  |           |       |
| 11  | *            | Elective II  | 3      | 0    | 0      | 3  | 10     | 10       | 10     | 60     | -          |             | 100  |  |  |           |       |
| 11. | US 2005      | Monogramment | n      | 0    | 0      | C  | 10     | 10       | 5      | 25     |            | -           | 50   |  |  |           |       |
| 10  | LP 2002      | Audit        | 2      | 0    | U      | 2  | 0      |          | 3      | 23     | -          | 0           | 30   |  |  |           |       |
| 12. | ¢            |              | 0      | 0    | 2      | 0  | U      | 0        | 0      | 0      | 0          | 0           |      |  |  |           |       |
|     | \$           |              | 0      | 1    | 2      | 0  | 00     | 0        | 0      | 0      | U<br>100   | 100         | 750  |  |  |           |       |
|     |              | 1 otal       | 1/     | 1    | 10     | 22 | 90     | 90       | 22     | 315    | 100        | 200         | /50  |  |  |           |       |
|     |              | Crand Tatal  | 22     | 2    | 20     | 11 | 1/5    | 175      | 110    | 640    | 200        | 200         | 1500 |  |  |           |       |
|     |              | Granu Total  | 33     | 3    | 20     | 44 |        | 1/5      | 110    | 040    | 200        |             | 1200 |  |  |           |       |

 $\mathbf{L} =$ Lecture,  $\mathbf{T} =$ Tutorial,  $\mathbf{P} =$ Practical,  $\mathbf{T}\mathbf{A} =$ Teacher Assessment,  $\mathbf{ESE} =$ End Semester Examination

| <b># Professional Elective III</b> | # Professional Elective IV      | * Open Elective II         |
|------------------------------------|---------------------------------|----------------------------|
| ME 3005 Theory of Machines         | 3018Introduction to FEM         | ME 3027 Quality Management |
|                                    |                                 | Systems                    |
| ME 3006 Advanced Manufacturing     | ME 3019 Mechanical Vibrations   |                            |
| Techniques                         |                                 |                            |
| ME 3007 Machine Tool Design        | ME 3020Advanced stress analysis |                            |
| ME 3008 Modern Control Theory      | ME 3021 Design of Machine       |                            |
|                                    | elements-II                     |                            |
| ME 3009 Power Plant Engineering    | ME 3022Machine Tool Erection    |                            |

| \$ Audit Course III              | \$ Audit Course IV |
|----------------------------------|--------------------|
| AC 3001 Basics of Product Survey | AC 3002 Seminar    |

|                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Co                                                                       | ntac                                                                                                                                                                                                                                                                                                                                          | t                                                                             |                                                                     | C                                                         | ontinuou                                                                                                                                    | ıs Eva                                                    | luation                                           | in tern                                         | ns of Mark                                               | s                                                                                                     |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Per                                                                      | riod                                                                                                                                                                                                                                                                                                                                          |                                                                               |                                                                     |                                                           |                                                                                                                                             |                                                           |                                                   |                                                 |                                                          |                                                                                                       |
|                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Hı                                                                      | :s.)                                                                                                                                                                                                                                                                                                                                          |                                                                               | -                                                                   |                                                           |                                                                                                                                             |                                                           |                                                   | 1                                               |                                                          |                                                                                                       |
|                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                                     |                                                           | Theo                                                                                                                                        | ry                                                        |                                                   |                                                 | Practica                                                 |                                                                                                       |
| C.                                                  | Cal                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                                     | Class                                                     | Class                                                                                                                                       | т                                                         |                                                   | т                                               | I/VIVa                                                   | Tat                                                                                                   |
| Sr.                                                 | Coa                                                                                                         | Subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | т                                                                        | т                                                                                                                                                                                                                                                                                                                                             | D                                                                             | Credits                                                             | Test                                                      | test                                                                                                                                        |                                                           | FSF                                               |                                                 | voce                                                     | 10t                                                                                                   |
| INO                                                 | e                                                                                                           | Subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L                                                                        | I                                                                                                                                                                                                                                                                                                                                             | Γ                                                                             | Somostor                                                            | 1<br>T                                                    | 11                                                                                                                                          | A                                                         | LSL                                               | vv                                              |                                                          | ai                                                                                                    |
|                                                     | ME                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                               |                                                                               | Semester                                                            | 15                                                        | 15                                                                                                                                          |                                                           |                                                   |                                                 |                                                          |                                                                                                       |
| 1                                                   | 3001                                                                                                        | Applied Mathematics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                        | 0                                                                                                                                                                                                                                                                                                                                             | 0                                                                             | 3                                                                   | 15                                                        | 15                                                                                                                                          | 10                                                        | 60                                                | _                                               | -                                                        | 100                                                                                                   |
| 1.                                                  | ME                                                                                                          | Design of Machine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                        | 0                                                                                                                                                                                                                                                                                                                                             | Ŭ                                                                             | 5                                                                   | 15                                                        | 15                                                                                                                                          | 10                                                        | 00                                                |                                                 | _                                                        | 100                                                                                                   |
| 2.                                                  | 3002                                                                                                        | Elements-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                                                                        | 1                                                                                                                                                                                                                                                                                                                                             | 0                                                                             | 3                                                                   |                                                           |                                                                                                                                             | 10                                                        | 60                                                | -                                               |                                                          | 100                                                                                                   |
|                                                     | ME                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                                     | 10                                                        | 10                                                                                                                                          |                                                           |                                                   |                                                 | -                                                        |                                                                                                       |
| 3.                                                  | 3003                                                                                                        | Engineering Metallurgy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                                        | 0                                                                                                                                                                                                                                                                                                                                             | 0                                                                             | 2                                                                   |                                                           |                                                                                                                                             | 05                                                        | 25                                                | -                                               |                                                          | 50                                                                                                    |
|                                                     | ME                                                                                                          | Fluid Mechanics and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |                                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                                     | 15                                                        | 15                                                                                                                                          |                                                           |                                                   |                                                 | -                                                        |                                                                                                       |
| 4.                                                  | 3004                                                                                                        | Hydraulics Machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                        | 1                                                                                                                                                                                                                                                                                                                                             | 0                                                                             | 4                                                                   |                                                           |                                                                                                                                             | 10                                                        | 60                                                | -                                               |                                                          | 50                                                                                                    |
|                                                     | ME                                                                                                          | Lab -Design of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |                                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                                     | -                                                         |                                                                                                                                             |                                                           |                                                   |                                                 | 25                                                       |                                                                                                       |
| 5.                                                  | 3010                                                                                                        | Machine-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                        | 0                                                                                                                                                                                                                                                                                                                                             | 2                                                                             | 1                                                                   |                                                           | -                                                                                                                                           | -                                                         | -                                                 | 25                                              |                                                          | 50                                                                                                    |
|                                                     | ME                                                                                                          | Lab-Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                               |                                                                               |                                                                     | -                                                         |                                                                                                                                             |                                                           |                                                   |                                                 | 25                                                       |                                                                                                       |
| 6.                                                  | 3011                                                                                                        | Metallurgy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                        | 0                                                                                                                                                                                                                                                                                                                                             | 2                                                                             | 1                                                                   |                                                           | -                                                                                                                                           | -                                                         | -                                                 | 25                                              |                                                          | 50                                                                                                    |
| -                                                   | ME                                                                                                          | Lab- Fluid Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                        | 0                                                                                                                                                                                                                                                                                                                                             | 2                                                                             | 1                                                                   | -                                                         |                                                                                                                                             |                                                           |                                                   | 25                                              | 25                                                       | 50                                                                                                    |
| /.                                                  | 3012                                                                                                        | and Hydraulic Machines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                        | 0                                                                                                                                                                                                                                                                                                                                             | 2                                                                             | 1                                                                   | 0                                                         | -                                                                                                                                           | -                                                         | -                                                 | 25                                              | 0                                                        | 50                                                                                                    |
| 8.                                                  | \$                                                                                                          | Audit Course III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                        | 0                                                                                                                                                                                                                                                                                                                                             | 2                                                                             | 0                                                                   | 0                                                         | 0                                                                                                                                           | 0                                                         | 0                                                 | 0                                               | 0                                                        | 0                                                                                                     |
|                                                     |                                                                                                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                       | 2                                                                                                                                                                                                                                                                                                                                             | 8                                                                             |                                                                     | 55                                                        | 55                                                                                                                                          | 35                                                        | 205                                               | 75                                              | 75                                                       | 450                                                                                                   |
|                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                          |                                                                                                                                                                                                                                                                                                                                               |                                                                               | Semester 1                                                          | 1                                                         |                                                                                                                                             |                                                           |                                                   |                                                 |                                                          |                                                                                                       |
|                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C                                                                        | onto                                                                                                                                                                                                                                                                                                                                          | ot                                                                            |                                                                     | C                                                         | antinuou                                                                                                                                    | G Evo                                                     | Inotion                                           | in tom                                          | ag of Monly                                              | .a                                                                                                    |
| Sr                                                  |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C<br>P                                                                   | onta<br>Perio                                                                                                                                                                                                                                                                                                                                 | ict<br>d                                                                      |                                                                     | C                                                         | ontinuou                                                                                                                                    | ıs Eva                                                    | luation                                           | in tern                                         | ns of Mark                                               | S                                                                                                     |
| Sr.<br>No                                           | Code                                                                                                        | - Subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C<br>P                                                                   | onta<br>'erio<br>Hrs                                                                                                                                                                                                                                                                                                                          | nct<br>od<br>.)                                                               |                                                                     | C                                                         | ontinuou                                                                                                                                    | ıs Eva                                                    | luation                                           | in tern                                         | ns of Mark                                               | ŝ                                                                                                     |
| Sr.<br>No                                           | Code                                                                                                        | e Subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(<br>P<br>(                                                             | onta<br>'erio<br>Hrs                                                                                                                                                                                                                                                                                                                          | nct<br>od<br>.)                                                               |                                                                     | C                                                         | ontinuou<br>Theo                                                                                                                            | is Eva                                                    | luation                                           | in tern                                         | ns of Mark                                               | S                                                                                                     |
| Sr.<br>No                                           | Code                                                                                                        | e Subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C<br>P<br>(                                                              | onta<br>Perio<br>Hrs                                                                                                                                                                                                                                                                                                                          | nct<br>od<br>.)                                                               |                                                                     | Class                                                     | ontinuou<br>Theo<br>Class                                                                                                                   | ıs Eva<br>ry                                              | luation                                           | in tern                                         | ns of Mark<br>Practic<br>al /Viva                        | S                                                                                                     |
| Sr.<br>No                                           | Code                                                                                                        | e Subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C<br>P<br>(                                                              | onta<br>Perio<br><u>Hrs</u>                                                                                                                                                                                                                                                                                                                   | nct<br>od<br>.)                                                               |                                                                     | Class<br>Test                                             | Theo<br>Class<br>test                                                                                                                       | is Eva<br>ry<br>T                                         | luation                                           | in tern                                         | ns of Mark<br>Practic<br>al /Viva<br>Voce                | Tota                                                                                                  |
| Sr.<br>No                                           | Code                                                                                                        | e Subject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C<br>P<br>(<br>L                                                         | onta<br>erio<br>Hrs                                                                                                                                                                                                                                                                                                                           | nct<br>od<br>.)<br>P                                                          | Credits                                                             | Class<br>Test<br>I                                        | Theo<br>Class<br>test<br>II                                                                                                                 | is Eva                                                    | luation                                           | in tern<br>TW                                   | ns of Mark<br>Practic<br>al /Viva<br>Voce                | Tota                                                                                                  |
| Sr.<br>No                                           | Code                                                                                                        | e Subject Professional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C<br>P<br>(<br>L                                                         | onta<br>Perio<br>Hrs<br>T                                                                                                                                                                                                                                                                                                                     | nct<br>od<br>.)<br>P                                                          | Credits                                                             | Class<br>Test<br>I<br>15                                  | Theo<br>Class<br>test<br>II<br>15                                                                                                           | is Eva<br>ry<br>T<br>A                                    | luation<br>ESE                                    | in tern<br>TW                                   | ns of Mark<br>Practic<br>al /Viva<br>Voce<br>-           | Tota                                                                                                  |
| Sr.<br>No<br>1.                                     | Code                                                                                                        | e Subject Professional Elective III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(<br>P<br>(<br>L<br>3                                                   | onta<br>erio<br>Hrs<br>T                                                                                                                                                                                                                                                                                                                      | nct<br>od<br>.)<br>P<br>0                                                     | Credits<br>3                                                        | Class<br>Test<br>I<br>15                                  | Theo<br>Class<br>test<br>II<br>15                                                                                                           | ry<br>T<br>A<br>10                                        | luation<br>ESE<br>60                              | in tern<br>TW<br>-                              | ns of Mark<br>Practic<br>al /Viva<br>Voce<br>-           | <b>Tota</b><br><b>1</b><br>100                                                                        |
| Sr.<br>No                                           | Code                                                                                                        | <ul> <li>Subject</li> <li>Professional<br/>Elective III</li> <li>Heat and Mass</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C.<br>P<br>(<br>L<br>3                                                   | onta<br>eric<br>Hrs<br>T<br>0                                                                                                                                                                                                                                                                                                                 | et<br>od<br>.)<br>P<br>0                                                      | Credits<br>3                                                        | Class<br>Test<br>I<br>15                                  | Theo<br>Class<br>test<br>II<br>15                                                                                                           | ry<br>T<br>A<br>10                                        | luation<br>ESE<br>60                              | in tern<br>TW                                   | ns of Mark<br>Practic<br>al /Viva<br>Voce<br>-<br>-      | <b>Tota</b><br>1<br>100                                                                               |
| Sr.<br>No<br>1.<br>2.                               | Code<br>#<br>ME<br>3014                                                                                     | <ul> <li>Subject</li> <li>Professional<br/>Elective III</li> <li>Heat and Mass<br/>Transfer</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Co<br>P<br>(<br>L<br>3<br>2                                              | onta<br>Perio<br>Hrs<br>T<br>0                                                                                                                                                                                                                                                                                                                | ect<br>od<br>.)<br>P<br>0<br>0                                                | Credits<br>3<br>3                                                   | Class<br>Test<br>I<br>15<br>15                            | Theo<br>Class<br>test<br>II<br>15<br>15                                                                                                     | <b>ry</b><br><b>T</b><br><u>A</u><br>10                   | <b>ESE</b><br>60<br>60                            | TW                                              | ns of Mark<br>Practic<br>al /Viva<br>Voce<br>-<br>-      | <b>Tota</b><br><b>1</b><br>100<br>100                                                                 |
| Sr.<br>No<br>1.<br>2.                               | Code<br>#<br>ME<br>3014<br>ME                                                                               | e Subject Subject Professional Elective III Heat and Mass Transfer Metrology and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C (<br>P (<br>L<br>3<br>2                                                | onta<br>verio<br>Hrs<br>T<br>0                                                                                                                                                                                                                                                                                                                | ect<br>od<br>.)<br>P<br>0<br>0                                                | Credits<br>3<br>3                                                   | Class<br>Test<br>I<br>15<br>15                            | Theo<br>Class<br>test<br>II<br>15<br>15                                                                                                     | ry<br>T<br>A<br>10<br>10                                  | <b>ESE</b><br>60<br>60                            | in tern<br>TW<br>-                              | ns of Mark<br>Practic<br>al /Viva<br>Voce<br>-<br>-<br>- | <b>Tota</b><br>1<br>100<br>100                                                                        |
| Sr.<br>No<br>1.<br>2.<br>3.                         | Code<br>#<br>ME<br>3014<br>ME<br>3015                                                                       | <ul> <li>Subject</li> <li>Professional<br/>Elective III</li> <li>Heat and Mass<br/>Transfer</li> <li>Metrology and<br/>Quality Control</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C (<br>P (<br>L<br>3<br>2<br>3                                           | onta<br>Perio<br>Hrs<br>T<br>0<br>1<br>0                                                                                                                                                                                                                                                                                                      | ect<br>od<br>.)<br>P<br>0<br>0<br>0                                           | Credits<br>3<br>3<br>3                                              | Class<br>Test<br>I<br>15<br>15                            | Theo<br>Class<br>test<br>II<br>15<br>15                                                                                                     | ry<br>T<br>A<br>10<br>10                                  | <b>ESE</b><br>60<br>60<br>60                      | in tern<br>TW<br>-<br>-                         | ns of Mark<br>Practic<br>al /Viva<br>Voce<br>-<br>-<br>- | <b>Tota</b><br><b>1</b><br>100<br>100<br>100                                                          |
| Sr.<br>No<br>1.<br>2.<br>3.<br>4.                   | Code<br>#<br>ME<br>3014<br>ME<br>3015<br>ME                                                                 | <ul> <li>Subject</li> <li>Subject</li> <li>Professional<br/>Elective III</li> <li>Heat and Mass<br/>Transfer</li> <li>Metrology and<br/>Quality Control</li> <li>Lab-Heat and Mass</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C   P ((<br>L 3<br>2<br>3                                                | onta<br>verio<br>Hrs<br>T<br>0<br>1                                                                                                                                                                                                                                                                                                           | ect<br>od<br>.)<br>P<br>0<br>0                                                | Credits<br>3<br>3<br>3                                              | Class<br>Test<br>I<br>15<br>15<br>-                       | Theo<br>Class<br>test<br>II<br>15<br>15<br>15<br>-                                                                                          | ry<br>T<br>A<br>10<br>10                                  | <b>ESE</b> 60 60 60                               | in tern<br>TW<br>-<br>-                         | ns of Mark Practic al /Viva Voce 25                      | <b>Tota</b><br><b>1</b><br>100<br>100<br>100                                                          |
| Sr.<br>No<br>1.<br>2.<br>3.<br>4.                   | Code<br>#<br>ME<br>3014<br>ME<br>3015<br>ME<br>3023                                                         | e Subject<br>Subject<br>Professional<br>Elective III<br>Heat and Mass<br>Transfer<br>Metrology and<br>Quality Control<br>Lab-Heat and Mass<br>Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C   P   (                                                                | onta<br>erio<br>Hrs<br>T<br>0<br>1<br>0<br>0                                                                                                                                                                                                                                                                                                  | P<br>0<br>0<br>2                                                              | <b>Credits</b> 3 3 1                                                | Class<br>Test<br>I<br>15<br>15<br>-                       | Theo<br>Class<br>test<br>II<br>15<br>15<br>-                                                                                                | ry<br>T<br>A<br>10<br>10<br>-                             | <b>ESE</b><br>60<br>60<br>-                       | in tern<br>TW<br>-<br>-<br>25                   | ns of Mark Practic al /Viva Voce 25 25                   | <b>Tota</b><br>1<br>100<br>100<br>50                                                                  |
| Sr.<br>No<br>1.<br>2.<br>3.<br>4.<br>5.             | Code<br>#<br>ME<br>3014<br>ME<br>3015<br>ME<br>3023<br>ME                                                   | <ul> <li>Subject</li> <li>Subject</li> <li>Professional<br/>Elective III</li> <li>Heat and Mass<br/>Transfer</li> <li>Metrology and<br/>Quality Control</li> <li>Lab-Heat and Mass<br/>Transfer</li> <li>Lab-Heat and Mass</li> <li>Control</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C   P ((<br>L 3<br>2<br>3<br>0                                           | onta<br>erio<br>Hrs<br>T<br>0<br>1<br>0<br>0                                                                                                                                                                                                                                                                                                  | P<br>0<br>0<br>0<br>2                                                         | Credits<br>3<br>3<br>1                                              | Class<br>Test<br>I<br>15<br>15<br>-<br>-                  | Theo<br>Class<br>test<br>II<br>15<br>15<br>15<br>-<br>-                                                                                     | ry<br>T<br>A<br>10<br>10<br>-                             | luation<br>ESE<br>60<br>60<br>-                   | in tern<br>TW<br>-<br>-<br>25                   | ns of Mark Practic al /Viva Voce 25 25                   | <b>Tota</b><br><b>1</b><br>100<br>100<br>50<br>50                                                     |
| Sr.<br>No<br>1.<br>2.<br>3.<br>4.<br>5.             | Code<br>#<br>ME<br>3014<br>ME<br>3015<br>ME<br>3023<br>ME<br>3024                                           | <ul> <li>Subject</li> <li>Subject</li> <li>Professional<br/>Elective III</li> <li>Heat and Mass<br/>Transfer</li> <li>Metrology and<br/>Quality Control</li> <li>Lab-Heat and Mass<br/>Transfer</li> <li>Lab-Heat and Mass</li> <li>Transfer</li> <li>Lab-Metrology and<br/>Quality Control</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C   P   (                                                                | ont<br>eric<br>Hrs<br>T<br>0<br>1<br>0<br>0<br>0                                                                                                                                                                                                                                                                                              | ect<br>od<br>)<br>P<br>0<br>0<br>0<br>2<br>2<br>2                             | Credits           3           3           1           1             | Class<br>Test<br>I<br>15<br>15<br>-<br>-                  | Theo<br>Class<br>test<br>II<br>15<br>15<br>-<br>-                                                                                           | ry<br>T<br>A<br>10<br>10<br>-<br>-                        | Luation<br>ESE<br>60<br>60<br>-<br>-              | in tern<br>TW<br>-<br>-<br>25<br>25             | ns of Mark Practic al /Viva Voce 25 25 25                | <b>Tota</b><br><b>1</b><br>100<br>100<br>50<br>50                                                     |
| Sr. No<br>1.<br>2.<br>3.<br>4.<br>5.                | Code<br>#<br>ME<br>3014<br>ME<br>3015<br>ME<br>3023<br>ME<br>3024<br>ME<br>3024                             | e       Subject         Professional       Elective III         Elective III       Heat and Mass         Transfer       Metrology and         Quality Control       Lab-Heat and Mass         Transfer       Lab-Heat and Mass         Transfer       Lab-Heat and Mass         Lab-Heat and Mass       Transfer         Lab-Heat and Mass       Transfer         Lab-Metrology and       Quality Control         Lab -CAME II       And Mini Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C   P   (                                                                | onta<br>erio<br>Hrs<br>T<br>0<br>1<br>0<br>0<br>0                                                                                                                                                                                                                                                                                             | P<br>0<br>0<br>2<br>2<br>2                                                    | Credits<br>3<br>3<br>1<br>1                                         | Class<br>Test<br>I<br>15<br>15<br>-<br>-<br>-             | Theo<br>Class<br>test<br>II<br>15<br>15<br>-<br>-                                                                                           | ry<br>T<br>A<br>10<br>10<br>-<br>-                        | ESE           60           60           -         | <b>TW</b> 25 25 25 25                           | ns of Mark Practic al /Viva Voce 25 25 25 25             | <b>Tota</b><br><b>1</b><br>100<br>100<br>50<br>50<br>50                                               |
| Sr. No<br>1.<br>2.<br>3.<br>4.<br>5.<br>6.          | Code<br>#<br>ME<br>3014<br>ME<br>3015<br>ME<br>3023<br>ME<br>3024<br>ME<br>3013                             | <ul> <li>Subject</li> <li>Subject</li> <li>Professional<br/>Elective III</li> <li>Heat and Mass<br/>Transfer</li> <li>Metrology and<br/>Quality Control</li> <li>Lab-Heat and Mass<br/>Transfer</li> <li>Lab-Heat and Mass<br/>Transfer</li> <li>Lab-Heat and Mass</li> <li>Transfer</li> <li>Lab-Metrology and<br/>Quality Control</li> <li>Lab-Metrology and<br/>Quality Control</li> <li>Lab-Metrology and<br/>Quality Control</li> <li>Lab-CAME II</li> <li>And Mini Project</li> <li>Industrial</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C   P   (                                                                | onta<br>erio<br>Hrs<br>T<br>0<br>1<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                        | P<br>0<br>0<br>0<br>2<br>2<br>2<br>2                                          | Credits           3           3           1           1           1 | Class<br>Test<br>I<br>15<br>15<br>-<br>-<br>-             | Theo<br>Class<br>test<br>II<br>15<br>15<br>-<br>-<br>-                                                                                      | ry<br>T<br>A<br>10<br>10<br>-<br>-                        | luation<br>ESE<br>60<br>60<br>-<br>-<br>-         | in tern<br>TW<br>-<br>-<br>25<br>25<br>25       | ns of Mark Practic al /Viva Voce 25 25 25 25             | <b>Tota</b><br><b>1</b><br>100<br>100<br>50<br>50<br>50<br>50                                         |
| Sr.<br>No<br>1.<br>2.<br>3.<br>4.<br>5.<br>6.       | Code<br>#<br>ME<br>3014<br>ME<br>3015<br>ME<br>3023<br>ME<br>3024<br>ME<br>3024<br>ME<br>3013<br>HS         | E       Subject         Professional       Elective III         Elective III       Heat and Mass         Transfer       Metrology and         Quality Control       Lab-Heat and Mass         Transfer       Lab-Heat and Mass         Lab-Heat and Mass       Transfer         Lab-Heat and Mass       Transfer         Lab-Heat and Mass       Transfer         Lab-Metrology and       Quality Control         Lab -CAME II       And Mini Project         Industrial       Organization and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C   P   (                                                                | onta<br>erio<br>Hrs<br>0<br>1<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                             | P         0           0         0           2         2           2         2 | Credits           3           3           1           1           1 | Class<br>Test<br>I<br>15<br>15<br>-<br>-<br>-<br>15       | Theo<br>Class<br>test<br>II<br>15<br>15<br>-<br>-<br>-                                                                                      | ry<br>T<br>A<br>10<br>10<br>-<br>-<br>-                   | luation<br>ESE<br>60<br>60<br><br>-               | in tern<br>TW<br>-<br>25<br>25<br>25<br>-       | ns of Mark Practic al /Viva Voce 25 25 25                | <b>Tota</b><br><b>1</b><br>100<br>100<br>50<br>50<br>50                                               |
| Sr.<br>No<br>1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7. | Code<br>#<br>ME<br>3014<br>ME<br>3015<br>ME<br>3023<br>ME<br>3023<br>ME<br>3024<br>ME<br>3013<br>HS<br>3005 | e       Subject         Professional       Elective III         Elective III       Heat and Mass         Transfer       Metrology and         Quality Control       Lab-Heat and Mass         Transfer       Lab-Heat and Mass         Transfer       Lab-Heat and Mass         Itab-Heat and Mass       Transfer         Lab-Heat and Mass       Transfer         Lab-Metrology and       Quality Control         Lab -CAME II       And Mini Project         Industrial       Organization and         management       Mathina Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C   P   (                                                                | onta<br>erio<br>Hrs<br>T<br>0<br>1<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                        | P         0           0         0           2         2           2         0 | Credits<br>3<br>3<br>1<br>1<br>1<br>3                               | Class<br>Test<br>I<br>15<br>15<br>-<br>-<br>-<br>15       | Theo<br>Class<br>test<br>II<br>15<br>15<br>-<br>-<br>-<br>15                                                                                | ry<br>T<br>A<br>10<br>10<br>-<br>-<br>-<br>10             | luation<br>ESE<br>60<br>60<br>-<br>-<br>60        | <b>TW</b> 25 25 25                              | ns of Mark Practic al /Viva Voce 25 25 25 -              | <b>Tota</b><br><b>1</b><br>100<br>100<br>100<br>50<br>50<br>50<br>100                                 |
| Sr. No<br>1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.    | Code<br>#<br>ME<br>3014<br>ME<br>3015<br>ME<br>3023<br>ME<br>3023<br>ME<br>3024<br>ME<br>3013<br>HS<br>3005 | e Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subject<br>Subj | C   P (<br>(<br>L<br>3<br>2<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>1<br>1 | ont:           erio           Hrs           T           0           1           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           0           1 | P<br>0<br>0<br>0<br>2<br>2<br>2<br>2<br>0<br>6                                | Credits<br>3<br>3<br>1<br>1<br>1<br>3<br>15                         | Class<br>Test<br>I<br>15<br>15<br>-<br>-<br>-<br>15<br>60 | Theo           Theo           Class           test           II           15           15           -           -           15           60 | ry<br>T<br>A<br>10<br>10<br>10<br>-<br>-<br>-<br>10<br>40 | luation<br>ESE<br>60<br>60<br>-<br>-<br>60<br>240 | in tern<br>TW<br>-<br>25<br>25<br>25<br>-<br>75 | ns of Mark Practic al /Viva Voce 25 25 25 25 - 75        | <b>Tota</b><br><b>1</b><br>100<br>100<br>50<br>50<br>50<br>100<br><b>50</b><br><b>50</b><br><b>50</b> |

# Structure for Third Year B. Tech. (Mechanical Engineering) (Part Time) Choice Based Credit System

| Sr.<br>No | Code       | Semester III           Contact         Continuous Evaluation in terms of Marks           Period         (Hrs.) |        |   |        |             |                    |                             |           | S   |     |                             |           |
|-----------|------------|----------------------------------------------------------------------------------------------------------------|--------|---|--------|-------------|--------------------|-----------------------------|-----------|-----|-----|-----------------------------|-----------|
|           |            | 9                                                                                                              | L      | T | P      | Credi<br>ts | Class<br>Test<br>I | Theo<br>Class<br>test<br>II | ory<br>TA | ESE | TW  | Practic<br>al /Viva<br>Voce | Tota<br>l |
| 1.        | ME<br>3016 | Industrial<br>Engineering                                                                                      | 2      | 0 | 0      | 2           | 10                 | 10                          | 5         | 25  | -   | -                           | 50        |
| 2.        | ME<br>3017 | Mechanical<br>Measurement                                                                                      | 2      | 0 | 0      | 2           | 10                 | 10                          | 5         | 25  | -   | -                           | 50        |
| 3.        | #          | Professional<br>Elective IV                                                                                    | 3      | 0 | 0      | 3           | 15                 | 15                          | 10        | 60  | -   | -                           | 100       |
| 4.        | ME<br>3025 | Lab- Mechanical<br>Measurement                                                                                 | 0      | 0 | 2      | 1           | -                  | -                           | -         | -   | 25  | 25                          | 50        |
| 5.        | ME<br>3026 | Industrial Interaction                                                                                         | 0      | 0 | 2      | 1           | -                  | -                           | -         | -   | 25  | 25                          | 50        |
| 6.        | *          | Open Elective II                                                                                               | 3      | 0 | 0      | 3           | 15                 | 15                          | 10        | 60  | -   | -                           | 100       |
| 7.        | HS<br>3001 | Production<br>Management                                                                                       | 2      | 0 | 0      | 2           | 10                 | 10                          | 5         | 25  | -   | -                           | 50        |
| 8.        | \$         | Audit Course IV                                                                                                | 0      | 0 | 2      | 0           | 0                  | 0                           | 0         | 0   | 0   | 0                           | 0         |
|           |            |                                                                                                                | 1      |   |        |             | 60                 |                             |           |     |     | 50                          |           |
|           |            | Total                                                                                                          | 2      | 0 | 6      | 14          |                    | 60                          | 35        | 195 | 50  |                             | 450       |
|           |            | Grand Total                                                                                                    | 3<br>3 | 3 | 2<br>0 | 44          | 175                | 175                         | 110       | 640 | 200 | 200                         | 1450      |

L = Lecture, T = Tutorial, P = Practical, TA = Teacher Assessment, ESE = End Semester Examination

| <b># Professional Elective III</b> | <b># Professional Elective IV</b> | * Open Elective II         |
|------------------------------------|-----------------------------------|----------------------------|
| ME 3005 Theory of Machines         | 3018Introduction to FEM           | ME 3027 Quality Management |
|                                    |                                   | Systems                    |
| ME 3006 Advanced Manufacturing     | ME 3019 Mechanical Vibrations     |                            |
| Techniques                         |                                   |                            |
| ME 3007 Machine Tool Design        | ME 3020Advanced stress analysis   |                            |
| ME 3008 Modern Control Theory      | ME 3021 Design of Machine         |                            |
|                                    | elements-II                       |                            |
| ME 3009 Power Plant Engineering    | ME 3022Machine Tool Erection      |                            |

| \$ Audit Course III              | \$ Audit Course IV |
|----------------------------------|--------------------|
| AC 3001 Basics of Product Survey | AC 3002 Seminar    |

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3001: APPLIED MATHEMATICS |                                 |  |  |  |  |
|------------------------------|---------------------------------|--|--|--|--|
| Teaching Scheme              | Examination Scheme              |  |  |  |  |
| Lectures: 3 Hrs/Week         | Class Test 1 : 15 Marks         |  |  |  |  |
| Tutorial: Hr/Week            | Class Test 2 : 15 Marks         |  |  |  |  |
| Credits: 3                   | Teacher's Assessment : 10 Marks |  |  |  |  |
|                              | End Semester Exam : 60 Marks    |  |  |  |  |

**Pre-requisites::**MA1001-Engineering Mathematics I, MA1002:Engineering Mathematics II, MA2001 Engineering Mathematics III.

#### **Course Description:**

This course is designed to introduce students to mathematical methods for analysis, modeling, prediction and problem solving. Topic covered are complex algebra, systems of linear equations, differentiation of algebraic and transcendental functions, introduction to integration, probability and curve fitting for linear and nonlinear data.

#### **Course Objectives**

- 1. To inculcate an ability to relate engineering problems to mathematical context
- 2. To provide a solid foundation in mathematical fundamentals required to solve engineering problem
- 3. To study complex variables and complex integrals
- 4. To study the basic principles of statistics and probability and complex integration
- 5. To study different numerical methods and curve fitting

**Course outcomes:** At the end of the course, the student will be able to:

| CO1 | Apply knowledge of complex variables and integral for real life and engineering problems. |
|-----|-------------------------------------------------------------------------------------------|
| CO2 | Apply the knowledge of various numerical methods and interpolation.                       |
| CO3 | Apply the concept of probability distribution to engineering problems.                    |
| CO4 | Apply knowledge of curve fitting for engineering problems.                                |
| CO5 | Identify, formulate and solve mathematical engineering problems.                          |

| Unit | Function of Complex variables: Analytic functions, Cauchy-Riemann conditions,    |
|------|----------------------------------------------------------------------------------|
| 1    | Harmonic functions, Conjugate functions and their applications.                  |
|      | Complex integral: Integration of complex functions, simply and multiply          |
|      | connected regions, Cauchy's integral theorem, Cauchy's integral formula,         |
|      | Singularities, Zeroes, Residues and Residue theorem.                             |
| Unit | Numerical solutions of algebraic and transcendental equations: Bisection         |
| 2    | method, Regula-Falsi method, Newton-Raphson method, Direct iterative method,     |
|      | Graffe's root squaring method.                                                   |
|      | Solution of system of linear algebraic equation: Matrix inversion method, Gauss- |
|      | elimination Method, Jordan's method, Crout's method. Gauss-Seidel iterative      |
|      | method                                                                           |

| Unit | Interpolation: Finite difference operator, Interpolation formula with equal and          |
|------|------------------------------------------------------------------------------------------|
| 3    | unequal intervals. Divided differences and central differences.                          |
|      | Numerical differentiation and integration: Differentiation using forward,                |
|      | backward and divided difference, General quadrature formula, Trapezoidal rule,           |
|      | Simpson's 1/3rd rule, Simpson's 3/8th rule, Weddle's rule.                               |
| Unit | Basics of probability, Bayes theorem, Random variables, Probability and density          |
| 4    | functions, Binomial, Poisson and Normal distributions. <b>Probability Distributions:</b> |
|      | Discrete and Continuous random variables, Probability mass and density function,         |
|      | Probability distribution for random variables, Expected value, Variance.                 |
|      | Probability Distributions: Binomial, Poisson and Normal Distributions.                   |
| Unit | Curve Fitting: Least square curve fitting procedures for straight line, Nonlinear        |
| 5    | curve fitting, weighted least square approximation, Method of least square for           |
|      | continuous function.                                                                     |

#### **Text Books**

1. B. S. Grewal, "Engineering Mathematics", Khanna Publishers, 12/e, 2006.

- 2. Pipes & Pipes, "Mathematics for Engineers", ELBS Publication, 1998
- 3. S. S. Sastry, "Engineering Mathematics", Vol I, II Prentice Hall Publication, 3/e, 2004.

#### **Reference Books:**

- 1. Francis J. Scheid, "Schaum's Outline of Numerical Analysis", McGraw-Hill, New York, 1989.
- 2. Gupta P. P., Malik G.S., "Calculus of Finite Differences and Numerical Analysis", Krishna PrakashanMandir, Meerut, 21/e, 2006.
- 3. Murray R. Spiegel, Schaum's Outline of Complex Variables, McGraw-Hill, NewYork, 1968.

#### Mapping of Course outcome with Program Outcomes

| Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1 | PO1 | PO1 | PSO | PSO |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Outcom |     |     |     |     |     |     |     |     |     | 0   | 1   | 2   | 1   | 2   |
| e      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| CO1    | 1   |     | 2   |     |     | 3   |     |     |     |     |     |     | 2   |     |
| CO2    | 1   |     | 1   |     |     | 3   |     |     |     |     |     |     |     |     |
| CO3    | 2   |     | 3   |     |     |     |     |     |     |     |     |     | 2   |     |
| CO4    | 2   |     | 2   |     |     | 3   |     |     |     |     |     |     | 2   |     |
| CO5    | 1   |     | 1   |     |     | 3   |     |     |     |     |     |     | 2   |     |

1 – High 2 – Medium 3 – Low

**Teacher's Assessment:** Teachers Assessment of 20 marks is based on one of the / or combination of few of following

- 1) Question & answer / Numerical solution
- 2) Power point presentation of case studies
- 3) Quiz

#### **Assessment Pattern**

| Assessment    | Knowledge Level | Test 1 | Test 2 | Teachers    | End         |
|---------------|-----------------|--------|--------|-------------|-------------|
| Pattern       |                 |        |        | Assessment/ | Semester    |
| Level No.     |                 |        |        | Assignment  | Examination |
| K1            | Remember        | 05     | 00     | 05          | 10          |
| K2            | Understand      | 05     | 00     | 05          | 10          |
| K3            | Apply           | 05     | 00     | 00          | 20          |
| K4            | Analyze         | 00     | 05     | 00          | 20          |
| K5            | Evaluate        | 00     | 05     | 00          | 00          |
| K6            | Create          | 00     | 05     | 00          | 00          |
| Total Marks 1 | 00              | 15     | 15     | 10          | 60          |

#### Assessment table

| Assessment Tool                | K1  | K2  | K3  | K4  | K3  |
|--------------------------------|-----|-----|-----|-----|-----|
|                                | CO1 | CO2 | CO3 | CO4 | CO5 |
| Class Test (15 Marks)          | 05  | 05  | 05  | 00  | 00  |
| Class Test (15 Marks)          | 00  | 00  | 05  | 05  | 05  |
| Teachers Assessment (20 Marks) | 05  | 05  | 00  | 00  | 00  |
| ESE Assessment (60 Marks)      | 10  | 10  | 10  | 20  | 10  |

**Special Instructions if any: Nil** 

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3002 : DESIGN OF MACHINE ELEMENTS-I |                                       |  |  |  |  |  |
|----------------------------------------|---------------------------------------|--|--|--|--|--|
| Teaching Scheme                        | Examination Scheme                    |  |  |  |  |  |
| Lectures: 2 Hrs/Week                   | Class Test I : 15 Marks               |  |  |  |  |  |
| Tutorial: 1 Hr/Week                    | Class Test II : 15 Marks              |  |  |  |  |  |
| Credits: 3                             | <b>Teachers Assessment</b> : 10 Marks |  |  |  |  |  |
|                                        | End Semester Exam : 60 Marks          |  |  |  |  |  |

#### Prerequisites: MA 2001 Mathematic III, ME 2002 Machine Drawing, ME 2012 Strength of Material

#### **Course description**:

After completing this course, students will have a broad and fundamental understanding of the concepts of mechanical component design. Students will have knowledge of different theories of failures and design process. Students will be able to apply fundamental knowledge design for joints, shafts, power screws etc. Students will be able to analyze safe design.

#### **Course Objectives:**

- 1. To understand procedure of machine design and develop an ability to apply it for simple component design by using design data hand book.
- 2.
- 3. To understand the different theories of failure and develop an ability to apply its knowledge for design of mechanical component and determine the resisting areas against failure.
- 4. To determine forces on transmission shaft and design of transmission shaft.
- 5. To determine the endurance strength and design of components subjected to fluctuating loads, welds and riveted joints.

#### **Course Outcome:**

After completing the course, students will able to:

| CO1 | Explain the basic concept of machine design. |
|-----|----------------------------------------------|
| CO2 | Design of machine components.                |
| CO3 | Design of welds and riveted joints.          |

| Unit 1 | Introduction – Design for Static Strength                                                 |
|--------|-------------------------------------------------------------------------------------------|
|        | Basic procedure for Machine design, Phases of Design, Design Considerations, Use of       |
|        | Standardization in design, Aesthetic, Ergonomic and Manufacturing considerations in       |
|        | design, Design for static strength, stress strain relationship for CI, MS, brass, rubber, |
|        | Factor of safety, design considerations for cast and forged components, modes of failure, |
|        | stresses due to bending, torsion, strain energy, eccentric loading, principal stresses,   |
|        | combined loading, Design of simple machine parts like as cotter joint and knuckle joint   |
|        | Introduction and use of software CAD and Hyperworks in design and drafting                |

|        | Theories of Failures and Design of Power Transmission Shafts                                     |
|--------|--------------------------------------------------------------------------------------------------|
|        | Theories of failures: Maximum Principal stress, Maximum Shear Stress, Distortion                 |
| Unit 2 | Energy, Max. Strain theory, Maximum total strain energy theory, Applications and                 |
|        | problems based on above                                                                          |
|        | Transmission Shaft material, design of shaft on strength basis, design of shaft on torsional     |
|        | and rigidity basis, design of shaft for Lateral rigidity basis, Bending and torsional            |
|        | moments, ASME code for standard sizes of shaft, Effect of stress concentration, design of        |
|        | shaft against fluctuating loads                                                                  |
| Unit 3 | Design against Fluctuating Loads                                                                 |
|        | Stress concentration, stress concentration factors, reduction of stress concentration effect,    |
|        | fluctuating stress- fully reversed, repeated, fluctuating, Fatigue failures, mechanism of        |
|        | fatigue failure, Mean stress effect- master diagram for steel, ferrous and non ferrous           |
|        | metals, endurance limit, S-N curve, Moore's test, low cycle and high cycle fatigue, notch        |
|        | sensitivity, Effect of surface finish, size, reliability, temperature, surface treatment,        |
|        | residual stress, manufacturing process on fatigue life, design for fatigue - finite and infinite |
|        | life, Soderberg's and Goodman diagrams, modified Goodman diagram, Gerber equation,               |
|        | ASME Elliptic criterion, combined stresses- Miner's rule.                                        |
| Unit 4 | Design of Welded and Riveted Joints                                                              |
|        | Welded Joints, Types of welded joints, standard welding symbols, weld materials, design          |
|        | of welded joints, weld joint design for but weld, parallel fillet, transverse fillet,            |
|        | symmetrical section, Unsymmetrical sections, eccentric loads in plane of weld, bending           |
|        | moment, selection of joint by referring design data handbook                                     |
|        | Riveted Joints: Rivet materials, rivet heads, rivet terminology, types of riveted joints,        |
| Unit 5 | Design of Power Screws and Fasteners                                                             |
| Onit 5 | Design of Fower Serews and Fasteners                                                             |
|        | <b>Power screws:</b> Terminology of power screw, Force analysis for square, trapezoidal          |
|        | Design of screw jack introduction to differential and compound screw regirculating ball          |
|        | besign of screw jack, introduction to unrefential and compound screw, recirculating ban          |
|        | Sciew                                                                                            |

#### **Text and Reference Books**

1. Shigley J. E. and Mischkey C. R., "Mechanical Engineering Design", TMH, New Delhi

- 2. Spotts M. F. and Shoup T. E., "Design of Machine Elements", Prentice Hall International
- 3. Hall A. S., Holowenko A. R. and Laughlin H. G., "Theory and Problems of Machine Design", Schaum's outline series, Tata McGraw Hill Publication. Co. Ltd, New Delhi
- 4. Bhandari V. B., "Design of Machine Elements", Tata McGraw Hill Publication. Co. Ltd, New Delhi

5. Black P. H. and O. E. Adam, "Machine Design", Tata McGraw Hill Publication. Co. Ltd, New Delhi

- 6.Burghardt M. D., "Introduction to engineering design and Problem Solving", McGraw Hill Publications
- 7. K. Lingaiah, "Machine Design Data book", Tata McGraw Hill Publication. Co. Ltd, New Delhi

8. Alfred Hall, Alfred Holowenko, Herman Laughlin, S. Somani, "Machine Design", Tata McGraw Hill Publication. Co. Ltd, New Delhi

#### Mapping of Course outcome with Program Outcomes:

| Course      | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1 | PO1 | PO1 | PSO | PSO |
|-------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Outcom      |     |     |     |     |     |     |     |     |     | 0   | 1   | 2   | 1   | 2   |
| e           |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|             |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| CO1         | 1   | 2   |     |     |     |     |     |     |     |     |     |     | 1   |     |
|             |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| CO2         | 1   | 2   | 3   |     |     |     |     |     |     |     |     |     | 2   |     |
| <b>GO</b> 1 |     | 4   | •   | 2   |     |     |     |     |     |     |     |     |     |     |
| CO4         |     | 1   | 2   | 3   |     |     |     |     |     |     |     |     | 1   |     |

#### $1-High\ 2-Medium\ 3$ - Low

#### Assessment table:

|                 | 1          |       |            |            |            |   |     |    |            |   |            |            |            |    |    |            |  |
|-----------------|------------|-------|------------|------------|------------|---|-----|----|------------|---|------------|------------|------------|----|----|------------|--|
| Course outcomes | CO         | CO1 0 |            | CO2        |            |   | CO3 |    |            |   | CO4        |            |            |    |    |            |  |
|                 |            |       |            |            |            |   |     |    |            |   |            |            |            |    |    |            |  |
|                 |            |       |            |            |            |   |     |    |            |   |            |            |            |    |    |            |  |
|                 | <b>K</b> 1 | кл    | <b>K</b> 3 | <b>K</b> 5 | <b>V</b> 1 | Κ | Κ   | Κ  | <b>K</b> 1 | Κ | <b>K</b> 3 | <b>K</b> 5 | <b>K</b> 1 | кл | K3 | <b>K</b> 5 |  |
| Assessment 1001 | K1         | K2    | КJ         | КJ         | N1         | 2 | 3   | 5  | K1         | 2 | КJ         | КJ         | K1         | K2 | КJ | KJ         |  |
| Class Test-I    | 2          | 1     | 6          | 6          | 0          | 0 | 0   | 0  | 0          | 0 | 0          | 0          | 0          | 0  | 0  | 0          |  |
| (15 Marks)      | 2          | 1     | 0          | 0          | 0          | 0 | U   | 0  | 0          | U | 0          | Ŭ          | 0          | 0  | U  | 0          |  |
| Class Test-II   | 0          | 0     | 0          | 0          | 2          | 1 | 6   | 6  | 0          | 0 | 0          | 0          | 0          | 0  | 0  | 0          |  |
| (15 Marks)      | Ŭ          | Ŭ     | Ŭ          | Ŭ          | -          | 1 | 0   | 0  | Ŭ          | Ŭ | Ŭ          | Ŭ          | Ŭ          | Ŭ  | 0  | 0          |  |
| Teachers        |            |       |            |            |            |   |     |    |            |   |            |            |            |    |    |            |  |
| Assessment (10  | 1          | 1     | 0          | 2          | 1          | 1 | 0   | 2  | 0          | 0 | 0          | 2          | 0          | 0  | 0  | 2          |  |
| Marks)          |            |       |            |            |            |   |     |    |            |   |            |            |            |    |    |            |  |
| ESE Assessment  | 4          | 0     | 10         | 10         | 4          | 0 | 10  | 10 | 2          | 0 | 0          | 10         | 2          | 0  | 0  | 10         |  |
| (60 Marks)      | -          | 0     | 10         | 10         | т          | 0 | 10  | 10 | 2          | U | 0          | 10         | 2          | 0  | 0  | 10         |  |

Teacher's Assessment: Teachers Assessment of 10 marks is based on one of the / or combination of

#### few of the following

- 1) Question & answer / Numerical solution
- 2) Presentation of case studies of Mechanical component design
- 3) Design and assembly of a mechanical system

**Assessment Pattern:** 

| Assessment | Knowledge Level | Test1 | Test2 | Teachers    | End Semester |
|------------|-----------------|-------|-------|-------------|--------------|
| Pattern    |                 |       |       | Assessment/ | Examination  |
| Level No.  |                 |       |       | Assignment  |              |
| K1         | Remember        | 2     | 2     | 2           | 10           |
| K2         | Understand      | 1     | 1     | 2           | 0            |
| K3         | Apply           | 06    | 06    | 00          | 20           |
| K4         | Analyze         | 00    | 00    | 00          | 00           |
| K5         | Evaluate        | 06    | 06    | 06          | 30           |
| K6         | Create          | 00    | 00    | 00          | 00           |
| Total      |                 | 15    | 15    | 10          | 60           |

Head of The Department

Mechanical Engineering Govt. Engg. College A'bad

| ME 3003: Engineering Metallurgy |                                |  |  |  |  |
|---------------------------------|--------------------------------|--|--|--|--|
| Teaching Scheme                 | Examination Scheme             |  |  |  |  |
| Lectures : 2 Hrs/ Week          | Class Test I : 10 Marks        |  |  |  |  |
| Credits : 2                     | Class Test II : 10 Marks       |  |  |  |  |
|                                 | Teachers Assessment : 05 Marks |  |  |  |  |
|                                 | End Semester Exam : 25 Marks   |  |  |  |  |

Prerequisites : ME 303 : Engineering Materials And Metallurgy

**Course Description :** After completing this course, students will have basic and fundamental knowledge in the field of Material Science. Students will get exposure to various Heat treatments and understanding the concept of Non ferrous Alloys and Bearing Materials.

#### **Course Objectives**

1) To enhance the basic knowledge in the field of Material Science

2) To get exposure to Iron Carbon Equilibrium Diagram and solidification of steels

3) To understand the basic concept of Time Temperature Transformation Diagram and properties/ Heat Treatment of High Speed Steels

4) To correlate and understand Cast Iron and Maurers Diagram

5) To able to explain the necessity of various Heat treatments

6) To understand the concept of Hardenability and End quench Test

7) To understand the concept of Non ferrous alloys, Bearing Materials and their essential properties

#### **Course Outcome**

After completing the course students will be able to

| CO1 | Explain the importance of materials properties and identify the material for specific  |
|-----|----------------------------------------------------------------------------------------|
|     | applications.                                                                          |
| CO2 | Explain the changes in phases of material with respect to time and temperature.        |
| CO3 | Explain the role of carbon content in the material like steel and cast iron.           |
| CO4 | Explain the change in the properties of materials by various heat treatment processes. |
| CO5 | Interpret the types of non-ferrous materials, their alloys and microstructure.         |

| Unit 1 | Properties of metals: Toughness, impact strength, creep and fatigue resistance,      |
|--------|--------------------------------------------------------------------------------------|
|        | Properties in selection of material, classification of metallurgy as Ferrous and Non |
|        | Ferrous Metallurgy, Introduction to Iron and steel making process, Cast iron         |
|        | manufacture. Equilibrium Diagrams construction with reference of solidification      |
|        | of metals and alloys, cooling curve.                                                 |

| Unit 2         | Equilibrium Diagrams for systems like isomorphous, eutectic, peritectic. Lever        |
|----------------|---------------------------------------------------------------------------------------|
|                | rule and its application with numerical. Iron Carbon diagram, study of different      |
|                | phases and compounds, critical temperatures and their significance during heating     |
|                | and cooling. Introduction to classification of ferrous materials. Constitution of     |
|                | alloys and phase diagram                                                              |
| Unit3          | Alloy steel: Classification of Alloying elements on Fe-C, TTT diagrams, study of      |
|                | tool steels like HCHC, Free Cutting steels, spring steels, HSLA Steels, Maraging      |
|                | steels-Heat treatment, properties and uses, HSS- Heat treatment, subzero treatment.   |
|                | Stainless steels,                                                                     |
|                | Cast irons: Maurer diagram, classification of cast iron, effect of size and shape and |
|                | distribution of graphite on the properties of Gray cast iron, mehanite, malleable     |
|                | cast iron, nodular cast iron.                                                         |
| TT • 4         |                                                                                       |
| Unit 4         | Necessity of H.T, Transformations of steels during heating and cooling, non           |
|                | equilibrium cooling and transformation products of austenite, 111 diagrams,           |
|                | different hardening methods, quenching media, tempering of plain carbon steels        |
|                | and its effects. Other H. I like annealing, normalizing. Concept of nardenability,    |
|                | berdening and without changing the composition. Eleme and induction herdening         |
|                | solid liquid and gas carburizing nitriding carbonitriding Palative marits and         |
|                | demerits                                                                              |
| Unit 5         | Non Ferrous metals: Engineering non ferrous metals and allows, conner allows          |
| Onit 5         | phase diagrams for CU-Zn and Cu-Sn brass bronze alluminium alloy Al-Si Ai-            |
|                | Cu system age hardening bearing materials and their essential properties              |
|                | Important heat treatment on non ferrous alloys mechanical properties and testing      |
|                | important neut deutinent en neu terreus anojs, meenameur properties and testing.      |
| Text Books     |                                                                                       |
| 1. V.Raghva    | n," Material Science and Engineering," PHI Publication                                |
| 2. V.D Kodg    | ire, "Metallurgy and Material Science," Everest Publication                           |
|                |                                                                                       |
| Reference B    | ooks                                                                                  |
| 1. S.Avner, '  | 'Physical Metallurgy," McGraw Hill Publication                                        |
| 2. Callister," | Material science and Engineering," Wiley Publication                                  |
| 3. Dieter." M  | lechanical Metallurgy," McGraw Hill Publication                                       |
| 3. Dieter." N  | Iechanical Metallurgy," McGraw Hill Publication                                       |

4. ASM Handbook Vol. 12 Material Characteristics5. ASM Handbook Vol . 12 Properties and Selection

# Mapping of Course Outcome With Program Outcome

| Course | PO | PO1 | PO1 | PO1 | PSO | PSO |
|--------|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|
| Outcom | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0   | 1   | 2   | 1   | 2   |
| e      |    |    |    |    |    |    |    |    |    |     |     |     |     |     |
| CO1    | 1  | 3  |    |    |    |    |    |    |    |     |     |     | 1   |     |
| CO2    |    |    | 2  |    |    |    |    |    |    |     |     |     | 1   |     |
| CO3    |    |    |    |    | 1  | 2  |    |    |    |     |     |     | 2   |     |
| CO4    |    |    |    | 1  |    |    |    |    |    |     |     |     | 1   |     |
| CO5    |    |    |    |    | 2  |    |    |    |    |     |     |     |     |     |

#### 1- High 2- Medium 3- Low

**Teachers Assessment:** Teachers assessment of 10 marks is based on any one of the /or combination of few of the following

- 1) Assignment based on the above syllabus
- 2) Question & Answer/ Numerical Solution

#### **Assessment Pattern**

| Assessment            | Knowledge  | T      | est  | Teachers Assessment | End Semester |
|-----------------------|------------|--------|------|---------------------|--------------|
| Pattern Level         | Level      | Test I | Test | / Assignment        | Examination  |
| No                    |            |        | II   |                     |              |
| K1                    | Remember   | 05     | 05   | 05                  | 10           |
| K2                    | Understand | 05     | 05   | 00                  | 10           |
| K3                    | Apply      | 00     | 00   | 00                  | 05           |
| K4                    | Analyse    | 00     | 00   | 00                  | 00           |
| K5                    | Evaluate   | 00     | 00   | 00                  | 00           |
| <b>Total Marks 50</b> |            | 10     | 10   | 05                  | 25           |

#### **Assessment Table**

| Assessment Tool                | K1  | K2  | K3  | K4  | K5  |
|--------------------------------|-----|-----|-----|-----|-----|
|                                | CO1 | CO2 | CO3 | CO4 | CO5 |
| Class Test (20 Marks)          | 05  | 05  | 05  | 05  | 00  |
| Teachers Assessment (05 Marks) | 05  | 00  | 00  | 00  | 00  |
| ESE Assessment (25 Marks)      | 10  | 10  | 05  | 00  | 00  |

# Special Instructions if any: Nil

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3004: FLUID MECHANICS AND HYDRAULIC MACHINES |                               |  |  |  |  |  |  |
|-------------------------------------------------|-------------------------------|--|--|--|--|--|--|
| Teaching Scheme                                 | Examination Scheme            |  |  |  |  |  |  |
| Lectures: 3Hrs/Week                             | Class Test I : 15Marks        |  |  |  |  |  |  |
| Tutorial: 1Hr/Week                              | Class Test II : 15 Marks      |  |  |  |  |  |  |
| Credits: 4                                      | Teachers Assessment : 10Marks |  |  |  |  |  |  |
|                                                 | End Semester Exam : 60 Marks  |  |  |  |  |  |  |

Prerequisites: ME1001- Basics of Mechanical Engineering

**Course description**: In this course we are going to learn fluid properties and fluid statics buoyancy forces and different kinds of equilibrium of floating bodies also we are going to learn fluid kinematics and fluid dynamics, dimension analysis and flow through pipes and various types of pumps impeller and casings.

#### **Objectives:**

- 1. To study the different types of fluid properties and their determination
- 2. To study and analyze the behaviour of fluids under static, kinematic and dynamic states
- 3. To study and analyze the construction, working and performance of different impulseand reaction turbines
- 4. To study and analyze the construction, working and performance of centrifugal pumps and other hydraulic Machines

#### **Course Outcome**

After completing the course, students will able to:

| CO1 | Understand the various properties of fluids.                                                         |
|-----|------------------------------------------------------------------------------------------------------|
| CO2 | Apply the principles of fluid statics, kinematics and dynamics for various engineering applications. |
| CO3 | Evaluate the performance of different impulse and reaction turbines.                                 |
| CO4 | Explain and analyze the concept of fluid flow through pipes.                                         |
| CO5 | Evaluate the performance of centrifugal pumps.                                                       |

| Unit | Fluid Properties & Fluid Statics                                                                   |
|------|----------------------------------------------------------------------------------------------------|
| 1    | Definitions of fluid & fluid mechanics, properties of fluids like viscosity, surface tension,      |
|      | capillarity etc., types of fluids, illustrative examples, Definition of Fluid Statics, pressure in |
|      | fluids at rest, Pascal's law, manometry, total pressure, center of pressure, hydrostatic forces    |
|      | on immersed plane and curved surfaces, buoyancy, metacenter and metacentric height,                |
|      | different kinds of equilibrium of floating bodies,                                                 |
|      | illustrative examples                                                                              |
| Unit | Fluid Kinematics & Fluid Dynamics                                                                  |
| 2    | Definitions of stream line, path line, streak line, stream tube, types of fluid flows, continuity  |
|      | equation in Cartesian and cylindrical co-ordinates, illustrative examples                          |
|      | Euler's equation of motion, Bernoulli's equation from Euler's equation, energy                     |
|      | correction factor, practical applications of Bernoulli's equation, momentum equation,              |
|      | momentum correction factor, engineering applications of momentum equation such as force            |
|      | on pipe bend and jet propulsion of ships, illustrative examples                                    |
| Unit | Dimensional Analysis & Flow through Pipes                                                          |

| 3    | Dimensions of different fluid parameters, Buckingham's pie theorem, different                     |  |  |  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|      | dimensionless groups, physical meaning of dimensionless groups, types of similarities,            |  |  |  |  |  |  |  |  |
|      | laws of similitude, practical applications, illustrative examples, Loss of energy in pipes,       |  |  |  |  |  |  |  |  |
|      | major and minor losses, Hydraulic Gradient Line (HGL) and Total Energy Line (TEL), flow           |  |  |  |  |  |  |  |  |
|      | through series pipes, parallel pipes and branched pipes, equivalent pipe, power                   |  |  |  |  |  |  |  |  |
|      | transmission through pipes, condition for maximum power transmission, efficiency for              |  |  |  |  |  |  |  |  |
|      | maximum power transmission, water hammer in pipes, illustrative examples                          |  |  |  |  |  |  |  |  |
| Unit | Impulse Turbines & Reaction Turbines                                                              |  |  |  |  |  |  |  |  |
| 4    | Impact of jet, force of jet impinging on fixed and moving flat plate, fixed and                   |  |  |  |  |  |  |  |  |
|      | moving curved plate, hinged plate, series of moving plates, illustrative examples                 |  |  |  |  |  |  |  |  |
|      | Introduction to turbines, types of turbines, efficiencies of turbines, work done by an            |  |  |  |  |  |  |  |  |
|      | impulse turbine, power produced by an impulse turbine, Pelton turbine and its                     |  |  |  |  |  |  |  |  |
|      | components, design of Pelton wheel, governing of Pelton wheel, illustrative examples              |  |  |  |  |  |  |  |  |
|      | Components of a reaction turbine, difference between impulse and reaction turbines,               |  |  |  |  |  |  |  |  |
|      | classifications of reaction turbines, efficiencies of reaction turbines, Francis Turbine, Kaplan  |  |  |  |  |  |  |  |  |
|      | Turbine, draft tube, types of draft tubes, efficiency of draft tube, unit power, unit speed, unit |  |  |  |  |  |  |  |  |
|      | discharge, specific speed of a turbine, significance of specific speed, cavitation in turbines    |  |  |  |  |  |  |  |  |
| Unit | Centrifugal Pumps.                                                                                |  |  |  |  |  |  |  |  |
| 5    | Introduction, types of pumps, types of impellers, types of casings, priming, various heads &      |  |  |  |  |  |  |  |  |
|      | efficiencies of centrifugal pump, minimum starting speed of a centrifugal pump,                   |  |  |  |  |  |  |  |  |
|      | multistage centrifugal pump, performance of pumps, principles of similarity applied to            |  |  |  |  |  |  |  |  |
|      | centrifugal pump, specific speed, NPSH, cavitation in pumps, illustrative examples                |  |  |  |  |  |  |  |  |
|      |                                                                                                   |  |  |  |  |  |  |  |  |

#### **Reference Books**

1. Bansal R. K., "Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P) Ltd. New Delhi 14

- 2. Modi and Seth, "Fluid Mechanics and Hydraulic Machines", Standard Book House, New Delhi
- 3. Jagdish Lal, "Hydraulic Machines", Metropolitan Book Company
- 4. Durgaiah Rama D., "Fluid Mechanics and Hydraulic Machines", New Age International, New Delhi
- 5. E. H. Shames, "Fluid Mechanics", McGraw Hill Publications
- 6. Streeter and Wylie, "Fluid Mechanics", McGraw Hill Publications
- 7. Rajput R. K., "Fluid Mechanics", S. Chand and Co., New Delhi

#### Mapping of Course outcome with Program Outcomes

|        | 5   |     |     |     | 0   |     |     |     |     |     |     |     |     |     |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1 | PO1 | PO1 | PSO | PSO |
| Outco  |     |     |     |     |     |     |     |     |     | 0   | 1   | 2   | 1   | 2   |
| me     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| CO1    | 2   | 2   | 1   |     |     | 3   |     |     |     |     |     |     | 1   |     |
| CO2    | 1   | 3   | 2   |     | 3   | 1   |     |     |     |     |     |     | 1   |     |
| CO3    | 1   | 3   | 2   |     | 3   | 1   |     |     |     |     |     |     | 2   |     |
| CO4    | 2   | 3   | 1   |     |     | 2   |     |     |     |     |     |     | 2   |     |

#### 1 – High 2 – Medium 3 – Low

**Teacher's Assessment:** Teachers Assessment of 10 marks is based on one of the / or combination of few of following

- 1. Question & answer /Calculations of parameters
- 2. Assignment which contains all type of numerical
- 3. Quiz

4. Experimentation perform during practicals, calculations done by student

| Assessment         | Knowledge Level | Test -I | Test II | Teachers    | End Semester |
|--------------------|-----------------|---------|---------|-------------|--------------|
| Pattern            |                 |         |         | Assessment/ | Examination  |
| Level No.          |                 |         |         | Assignment  |              |
| K1                 | Remember        | 03      | 03      | 02          | 10           |
| K2                 | Understand      | 04      | 04      | 02          | 10           |
| K3                 | Apply           | 03      | 03      | 02          | 20           |
| K4                 | Analyze         | 05      | 05      | 02          | 20           |
| K5                 | Evaluate        | 00      | 00      | 02          | 00           |
| K6                 | Create          | 00      | 00      | 00          | 00           |
| <b>Total Marks</b> | 100             | 15      | 15      | 10          | 60           |

# 

#### Assessment table

| Assessment Tool                | K1  | K2  | K3  | K4  |
|--------------------------------|-----|-----|-----|-----|
|                                | C01 | C02 | C03 | CO4 |
| Class Test (15 Marks)          | 03  | 04  | 03  | 05  |
| Class Test (15Marks)           | 03  | 04  | 03  | 05  |
| Teachers Assessment (10 Marks) | 02  | 03  | 02  | 03  |
| ESE Assessment (60 Marks)      | 10  | 10  | 20  | 20  |

# Special Instructions if any: Nil

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3005:THEORY OF MACHINES |                                 |  |  |  |  |
|----------------------------|---------------------------------|--|--|--|--|
| Teaching Scheme            | Examination Scheme              |  |  |  |  |
| Lectures: 3Hrs./Week       | Class Test 1 :15 Marks          |  |  |  |  |
| Tutorial: Hr./Week         | Class Test 2 :15 Marks          |  |  |  |  |
| Credits: 3                 | Teacher's Assessment : 10 Marks |  |  |  |  |
|                            | End Semester Exam : 60 Marks    |  |  |  |  |

#### Pre-requisites: Mechanism of Machines -ME 2010, ME 2012-SOM

#### **Course Description:**

This course aims to equip the student with fundamental knowledge of dynamics of machines so that they can appreciate problems of dynamic force balance, transmissibility of forces. Students learn how to model simple mechanical systems as the problem of vibrating systems, governors, gyroscope, brakes and dynamometers and then analyze these systems. Once these analytical skills have been developed, the students can apply these skills to the practical problems.

#### **Course Objectives**

- 1. To determine the balancing of masses of rotating and reciprocating machine elements
- 2. To understand the principles of gyroscope and governors
- 3. To determine the forces and power calculations for brakes and dynamometer
- 4. To determine the static and dynamic forces for mechanical systems

To understand the principles of vibrations

**Course outcomes:** At the end of the course, the student will be able to:

| 0 0 0= 10 0 | · · · · · · · · · · · · · · · · · · ·                                                 |
|-------------|---------------------------------------------------------------------------------------|
| CO1         | Explain and apply the principles of balancing of rotary and reciprocating masses.     |
| CO2         | Apply the principles of governor and its stabilization on various transport vehicles. |
| CO3         | Analyze the force and power generated in brakes and dynamometer.                      |
| CO4         | Evaluate static and dynamic force and design dynamically equivalent systems.          |
| CO5         | Explain the principles of vibrations.                                                 |

| Unit 1 | Balancing: Static balancing, dynamic balancing, balancing of several masses in     |
|--------|------------------------------------------------------------------------------------|
|        | different planes, force balancing of linkages, balancing of reciprocating mass,    |
|        | balancing of locomotives, effect of partial balancing in locomotives, balancing of |
|        | inline engines, balancing of V,W,V-8 and V-12 engines, balancing of radial         |
|        | engines.                                                                           |
|        |                                                                                    |
| Unit 2 | Governor: Introduction to centrifugal & inertia types governor, classification,    |
|        | Watt, porter, prowell spring loaded governor, Sensitivity & stability, Force       |
|        | diagram (Numerical)                                                                |
|        |                                                                                    |
|        | Brake & Dynamometers: Introduction, brake materials, types of brakes, shoe         |
|        | brake pivoted shoe brake double block brake simple and differential block brake    |

| Unit 3 | ,band and block brake, braking force, braking torque calculations, internal<br>expanding brake, normal pressure braking force, braking torque, braking of vehicle<br>when brake is applied on real wheel, front wheel, four wheels, Types of<br>dynamometer, rope brake, epicyclic train ,belt transmission, torsion and eddy<br>current dynamometer, fluid coupling and dynamometer, Numerical treatment. |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit 4 | Static and Dynamic force analysis: Static equilibrium, equilibrium of two and                                                                                                                                                                                                                                                                                                                              |
|        | three force members, equilibrium of four forces and torque, force convention and                                                                                                                                                                                                                                                                                                                           |
|        | free body diagrams.                                                                                                                                                                                                                                                                                                                                                                                        |
|        | D'Alemberts principle, equivalent offset inertia force, dynamic analysis of four<br>link mechanism and slider crank mechanism, Angular velocity and acceleration of<br>connecting rod, engine force analysis.                                                                                                                                                                                              |
| Unit 5 | Vibration: Introduction, Definitions, Types of vibration, Basic features of                                                                                                                                                                                                                                                                                                                                |
|        | vibrating system, cause effects and terminology, degree of freedom, Free                                                                                                                                                                                                                                                                                                                                   |
|        | longitudinal vibration, displacement, velocity and acceleration, Inertia effect of the                                                                                                                                                                                                                                                                                                                     |
|        | downed with ration from torging ly with ration (Single and Two rates system)                                                                                                                                                                                                                                                                                                                               |
|        | damped vibration, free torsional vibration (Single and 1 wo rotor system).                                                                                                                                                                                                                                                                                                                                 |

#### **Text Books**

1. Rattan, "Theory of machine", Tata McGraw-Hill Publishing Co. Ltd, New Delhi

- 2. P. Ballaney, "Theory of machine", Khanna Publication, New Delhi
- 3. JagdishLal, "Theory of machine and Mechanisms", Metropolitan publication
- 4. Thomas Beven, "Theory of machine", C B S Publisher
- 5. K. G. Grover, "Mechanical vibration", New Chand publication, New Delhi

#### **Reference Books**

1. Shigley and Vicker, "Theory of machine", McGraw-Hill Publishing Co. Ltd, New Delhi 2. J. S. Rao& R. V. Dukkipati, Mechanism & Machine Theory, New Age Publication

| Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1 | PO1 | PO1 | PSO | PSO |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Outcom |     |     |     |     |     |     |     |     |     | 0   | 1   | 2   | 1   | 2   |
| e      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| CO1    | 1   | 2   |     |     |     | 3   |     |     |     |     |     |     | 2   |     |
| CO2    | 1   | 2   |     |     |     | 3   |     |     |     |     |     |     | 1   |     |
| CO3    | 2   | 1   | 1   |     |     | 3   |     |     |     |     |     |     | 1   |     |
| CO4    | 3   | 3   | 2   |     |     |     |     |     |     |     |     |     | 2   |     |
| CO5    | 3   | 3   | 3   |     |     | 3   |     |     |     |     |     |     |     |     |

#### Mapping of Course outcome with Program Outcomes

#### 1 – High 2 – Medium 3 – Low

**Teacher's Assessment:** Teachers Assessment of 20 marks is based on one of the / or combination of few of the following

- 1) Question & answer / Numerical solution
- 2) Presentation of case studies

# **Assessment Pattern**

| Assessment<br>Pattern<br>Level No. | Knowledge Level | Test-1 | Test -2 | Teachers<br>Assessment/<br>Assignment | End Semester<br>Examination |
|------------------------------------|-----------------|--------|---------|---------------------------------------|-----------------------------|
| K1                                 | Remember        | 03     | 03      | 00                                    | 10                          |
| K2                                 | Understand      | 05     | 05      | 05                                    | 10                          |
| K3                                 | Apply           | 03     | 03      | 05                                    | 20                          |
| K4                                 | Analyze         | 02     | 02      | 00                                    | 20                          |
| K5                                 | Evaluate        | 03     | 03      | 00                                    | 00                          |
| K6                                 | Create          | 00     | 00      | 00                                    | 00                          |
| <b>Total Marks</b>                 | 100             | 15     | 15      | 10                                    | 60                          |

#### Assessment table

| Assessment Tool                | K1  | K2  | K3  | K4  | K3  |
|--------------------------------|-----|-----|-----|-----|-----|
|                                | CO1 | CO2 | CO3 | CO4 | CO5 |
| Class Test-1 (15 Marks)        | 05  | 03  | 02  | 05  | 00  |
| Class Test-2(15 Marks)         | 05  | 03  | 02  | 00  | 05  |
| Teachers Assessment (10 Marks) | 03  | 01  | 01  | 03  | 02  |
| ESE Assessment (60 Marks)      | 10  | 10  | 10  | 20  | 10  |

Special Instructions if any: Nil

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME3006: Advanced Manufacturing Techniques |                                |  |  |  |  |
|-------------------------------------------|--------------------------------|--|--|--|--|
| Teaching Scheme                           | Examination Scheme             |  |  |  |  |
|                                           | Class Test -1–15 Marks         |  |  |  |  |
| Lectures: 3 hrs/week                      | Class Test-2 15 Marks          |  |  |  |  |
| Credits: 3                                | Teachers Assessment – 10 Marks |  |  |  |  |
|                                           | End Semester Exam - 60 Marks   |  |  |  |  |

Prerequisite:-ME 2003: Manufacturing Processes, ME 2013: Machine Tools

**Course description**: After completing this course, students will have a broad and fundamental understanding of Advanced Manufacturing Techniques. Topics range from an Advanced casting, Advanced micro machining, Laser beam machining, powder metallurgy and Advanced measuring techniques like CMM etc. Students will learn Advanced manufacturing technique knowledge and tools used in it, and career options available within this field.

#### **Course objectives**:

To acquire knowledge of various advanced casting processes, casting simulation and analysis Understand various micro-machining methods and devices

Understand the measurement system for micro-machining and understand it's inspection methods Understand different aspects of powder metallurgy and surface coating Understand rapid prototyping and generative manufacturing processes

#### **Course outcomes:**

Students After completing the course, students will be able to:

| CO1 | Explain the different advanced manufacturing techniques.                                  |
|-----|-------------------------------------------------------------------------------------------|
|     |                                                                                           |
| CO2 | Compare and select different types of micro-machining processes for various applications. |
| CO3 | Compare and select different types of welding processes for various applications.         |
| CO4 | Explain and compare various powder metallurgy and surface coating methods.                |
| CO5 | Explain rapid prototyping and types of generative manufacturing processes.                |

|          | P          | <b>r8</b> •- |     |     |     |     | <u>r- °8</u> - |     |     |      |      |      |      |      |
|----------|------------|--------------|-----|-----|-----|-----|----------------|-----|-----|------|------|------|------|------|
| Course   | <b>PO1</b> | PO2          | PO3 | PO4 | PO5 | PO6 | <b>PO7</b>     | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| Out come |            |              |     |     |     |     |                |     |     |      |      |      |      |      |
|          |            |              |     |     |     |     |                |     |     |      |      |      |      |      |
| CO1      | 2          |              |     |     |     |     |                |     |     |      |      |      | 2    |      |
| CO2      |            | 2            |     |     |     |     |                |     |     |      |      |      | 1    |      |
| CO3      |            | 2            |     | 2   |     |     |                |     |     |      |      |      | 1    |      |
| CO4      | 2          |              | -   | •   |     |     | •              | •   | •   | -    |      |      | 2    |      |
| CO5      | •          | •            | •   | 3   |     |     | •              |     | •   | •    |      |      |      |      |

#### Mapping of Course outcome with programme outcome

| Unit 1 | Advances in Casting Process: Sheet molding, casting, V-process, flask less<br>molding, evaporative casting, plaster mould casting, design for plaster mould<br>casting quality- accuracy, uniformity and other considerations in casting and<br>molding. Recent developments in pattern and casting designing, Use of<br>CAD/CAM in foundries, Casting simulation and analysis. |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit 2 | Micro Machining: Machining for Micro devices, Various methods of<br>micromachining like Micro EDM, Micro ECM, Ultrasonic, Lithography, Beam<br>machining processes: LBM, IBM, EBM. Micro Electro Manufacturing System<br>(MEMS).                                                                                                                                                |

| Unit 3 | Advanced Welding Techniques Electron beam welding: LASER welding:<br>Ultrasonic welding Under water welding ,TIG MIG Testing of welding: Destructive<br>and non-destructive testing methods for welds                                                                                                                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit 4 | Powder metallurgy and surface coating: Powder Metallurgy: process, different methods of producing powders, different techniques to form the shape viz. pressing, extruding, sintering, and hot pressing, advantages, disadvantages, Surface Coating: principles, elements, process, advantages and surface preparation, physical vapour deposition, chemical vapour deposition, electroless coating. |
| Unit 5 | Advanced metal forming processes: High velocity forming-principles, comparison                                                                                                                                                                                                                                                                                                                       |
|        | of high velocity and conventional Forming processes. Explosive forming, Magnetic                                                                                                                                                                                                                                                                                                                     |
|        | pulse forming, Electro hydraulic Forming, Micro forming, Microcline, micro                                                                                                                                                                                                                                                                                                                           |
|        | extrusion, Micro bending Stretch forming, coining embossing, curling spinning,                                                                                                                                                                                                                                                                                                                       |
|        | flow forming advantages, Limitations and application of the process.                                                                                                                                                                                                                                                                                                                                 |

#### **Text and Reference Books**

1. Benjamin W. Niebel, Allen B Draper, Richard A. Wysk, "Modern Manufacturing process engineering" by McGraw Hill International Editions.

2. Garry F. Benedict- Marcel Dekker Inc "Non Traditional Manufacturing Processes" by CRC Press New York.

3. H.M.T, "Production Technology Hand Book", TMH

4. Hayane and Rosanthal "Metal Casting"

5. Derban Michigan, "Non traditional manufacturing process" by E.J. Weller Society of Manufacturing Engineers.

6. B.H. Amsteal, Philip F. Ostwald & Myron L. Begeman "Manufacturing process", By John Wiley & Sons, Eighth edition.

7. ASM "Metals Hand Book", ASM Publications.

8. P.K. Mishra "Non conventional machining process" by, Narosa Publication.

9. M P Groover and Zimmer "Manufacturing processes"- PHI Pvt. Ltd. Publications

10. Amitabh Ghosh, "Genetic Manufacturing", Prentice Hall

**Teacher's Assessment:** Teachers Assessment of 20 marks is based on one of the / or combination offew of following

- 1) Presentation of case studies
- 2) Question & answer / Numerical solution
- 3) Study of Industry processes

| Assessment      | Knowledge Level | Test1 | Test-2 | Teachers    | End Semester |
|-----------------|-----------------|-------|--------|-------------|--------------|
| Pattern         |                 |       |        | Assessment/ | Examination  |
| Level No.       |                 |       |        | Assignment  |              |
| K1              | Remember        | 05    | 05     | 03          | 15           |
| K2              | Understand      | 05    | 05     | 02          | 20           |
| K3              | Apply           | 05    | 05     | 02          | 15           |
| K4              | Analyze         | 00    | 00     | 03          | 10           |
| K5              | Evaluate        | 00    | 00     | 00          | 00           |
| K6              | Create          | 00    | 00     | 00          | 00           |
| Total Marks 100 |                 | 15    | 15     | 10          | 60           |

#### **Assessment Pattern**

#### Assessment table

| Assessment Tool                | K1, K2 | K1, K2 | K3  | K3, |
|--------------------------------|--------|--------|-----|-----|
|                                |        |        |     | K4  |
|                                | C01    | C02    | C03 | CO4 |
| Class Test-1 (15 Marks)        | 05     | 05     | 03  | 02  |
| Class Test-2 (15 Marks)        | 05     | 05     | 02  | 03  |
| Teachers Assessment (10 Marks) | 04     | 03     | 02  | 01  |
| ESE Assessment (60 Marks)      | 15     | 20     | 05  | 15  |

**Special Instructions if any: Nil** 

0 0 2

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| <b>ME 3007 : MACHINE TOOL DESIGN</b> |                            |            |  |  |  |
|--------------------------------------|----------------------------|------------|--|--|--|
| Teaching Scheme                      | Examination Scheme         |            |  |  |  |
| Lectures: 3 Hrs/Week                 | Class Test- I              | : 15 Marks |  |  |  |
| Total Credits : 03                   | Class Test- II             | :15 Marks  |  |  |  |
|                                      | <b>Teachers Assessment</b> | : 10 Marks |  |  |  |
|                                      | End Semester Exam          | : 60 Marks |  |  |  |

Prerequisites: ME1001 Basics of Mechanical Engineering, ME2013 Machine Tools

**Course description**: After completion of the course, students will have understanding of various machine tool drives and their components. They will have knowledge of how to design the gear boxes of machine tools, design of machine tool structures, guide ways, spindles etc. They will know the different control systems used in various machine tools. They also will acquire the knowledge of NC, CNC and DNC machines.

#### **Course Objectives**

- 1. To gain the knowledge of different drives and mechanisms used in machine tools
- 2. To gain the knowledge of design of gear boxes & feed boxes used in machine tools
- 3. To gain the knowledge of design of structures, guideways, spindles of machine tools
- 4. To gain the knowledge of various control systems used in machine tools

#### **Course Outcome**

After completing the course, students will be able to:

| CO1 | Design the various components of (structures, guide ways and spindles) of machine tools |
|-----|-----------------------------------------------------------------------------------------|
| CO2 | Design gear box and feed box for machine tool.                                          |
| CO3 | Select control system for machine tool.                                                 |

| Unit 1 | Machine Tool Drives & Mechanisms                                                           |
|--------|--------------------------------------------------------------------------------------------|
|        | Working & auxiliary motions, defining parameters, machine tool drives, hydraulic           |
|        | transmission & its elements, mechanical transmission & its elements, technico-             |
|        | economical prerequisites, general requirements of machine tool design processes.           |
| Unit 2 | Regulation of Speed & Feed Rates                                                           |
|        | Definition, stepped regulation of speed, various laws of stepped regulation, design of     |
|        | speed box, selection of range ratio, structural diagrams, speed chart, design of feed box, |
|        | machine tool drives using multiple speed motors, determination of number of teeth of       |
|        | gears, stepless regulation of speed & feed rates, hydraulic, electrical, mechanical        |
|        | stepless regulation                                                                        |
| Unit 3 | Design of Machine Tool Structures                                                          |
|        | Functions of machine tool structures & requirements, materials, static & dynamic           |
|        | stiffness, profiles of machine tool structures, basic design procedure, design of beds,    |
|        | design of columns, design of housings, design of bases and tables, design of cross rails,  |
|        | arms, saddles, carriages, rams, model techniques                                           |

|        | Design of Guide ways, Power Screws & Spindles                                             |
|--------|-------------------------------------------------------------------------------------------|
| Unit 4 | Types of guide ways, functions, design of slide ways, design criteria, design of          |
|        | aerostatic slide ways, design of antifriction guide ways, protecting devices for slide    |
|        | ways, design of power screws, functions of spindle unit, materials of spindles, effect of |
|        | machine tool compliance on machine accuracy, antifriction bearings, sliding bearings      |
| Unit 5 | Control Systems in Machine Tools                                                          |
|        | Functions, requirements & classification, control systems for changing speeds & feeds,    |
|        | control systems for forming & auxiliary motions, automatic control systems, adaptive      |
|        | control systems, numerical control systems, distributed numerical control (DNC-1),        |
|        | computer numerical control, direct numerical control(DNC-2) systems, recent trends in     |
|        | machine tools                                                                             |

#### **Text Books**

- 1. Mehta N. K., "Machine Tool Design", Tata McGraw Hill
- 2. Pal D. K. and Basu S. K., "Design of Machine Tools", 4th Revised Edition, Oxford-IBH
- 3. Bhattacharya A., Sen G. C., "Principles of Machine Tools", New Central Book Agency, Calcutta

#### **Reference Books**

- 1. Acherkan N. S., "Machine Tool", Vol. I to Vol. II, MIR publications
- 2. Kundra T, Rao P.M., Tiwari N. K., "Numerical Control and Computer Aided Manufacturing", Tata McGraw Hill
- 3. Martin S. J., "NC Machine Tools", ELBS publication

#### Mapping of Course outcome with Program Outcomes

| Course<br>Outcome | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO1<br>0 | PO1<br>1 | PO1<br>2 | PSO<br>1 | PSO<br>2 |
|-------------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|----------|----------|----------|----------|----------|
| CO1               | 1   |     |     | 2   |     |     | 1          |     |     |          |          |          | 1        |          |
| CO2               |     |     | 2   |     | 3   |     |            | 2   |     |          |          |          | 2        |          |

#### 1 – High 2 – Medium 3 - Low

#### **Teaching Strategies:**

The teaching strategy planned through the lectures, and team based home works. Exercises assigned weekly to stimulate the students to actively use and revise the learned concepts, which also help the students to express their way of solving the problems fluently in written form. Most critical concepts and mistakes emphasized

Teacher's Assessment: Teacher's assessment of 10 marks based on the following.

- 1) Home assignments
- 2) Surprise tests with multiple choice questions

#### **Assessment Pattern**

| Assessment<br>Pattern<br>Level No. | Knowledge Level | Test- I | Test- II | Teachers<br>Assessment/<br>Assignment | End Semester<br>Examination |
|------------------------------------|-----------------|---------|----------|---------------------------------------|-----------------------------|
| K1                                 | Understand      | 10      | 10       | 05                                    | 40                          |
| K2                                 | Apply           | 05      | 05       | 05                                    | 20                          |
| Total Marks 100                    |                 | 15      | 15       | 10                                    | 60                          |

#### Assessment table

| Assessment Tool                | K1  | K2  |
|--------------------------------|-----|-----|
| Course outcomes                | C01 | C02 |
| Class Test-I (15 Marks)        | 10  | 05  |
| Class Test- II (15 Marks)      | 10  | 05  |
| Teachers Assessment (10 Marks) | 05  | 05  |
| ESE Assessment (60 Marks)      | 40  | 20  |

Special Instructions if any: Nil.

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3008 MODERN CONTROL THEORY |                            |            |  |  |  |  |
|-------------------------------|----------------------------|------------|--|--|--|--|
| Teaching Scheme               | <b>Examination Scheme</b>  |            |  |  |  |  |
| Lectures: 3 Hrs/Week          | Class Test I               | : 15 Marks |  |  |  |  |
| Credits: 3                    | Class Test II              | : 15 Marks |  |  |  |  |
|                               | <b>Teachers Assessment</b> | : 10 Marks |  |  |  |  |
|                               | <b>End Semester Exam</b>   | : 60 Marks |  |  |  |  |

#### **Course description**:

Instrumentation and Control technicians solve electrical, electronic, and computer problems using their minds and hands. These technicians install, upgrade, maintain, and repair automated equipment in industries that produce everything from appliances, medical equipment, ethanol and electric power. As an Instrumentation and Control student you learn calibration and control of industrial process equipment. You learn about process variables such as motor speed, temperature control, humidity control, pressure, level, and flow rate.

#### **Course Objectives:**

- 1. To provide sound knowledge about various techniques used for the measurement of industrial parameters.
- 2. To learn the principle of Pressure, Temperature, flow, level, density and viscosity measurements.
- 3. To explore the application of measuring instruments in various industries.
- 4. To have an adequate knowledge about pressure transducers.

#### **Course Outcome:**

After completing the course, students will be able to:

| CO1 | Explain basics principles of sensors, transducers and control system components.            |
|-----|---------------------------------------------------------------------------------------------|
| CO2 | Apply hydraulic and pneumatic system for the industrial and real life problems.             |
| CO3 | Explain working principles of thermocouples, pyrometry, RTD, Thermistors and Strain gauges. |

| Unit 1 | BASIC CONTROL SYSTEM:                                                              |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------|--|--|--|--|--|
|        | Basic industrial control system of Mechanical, Thermal, Hydraulic, Pneumatic and   |  |  |  |  |  |
|        | Electromechanical, Block diagrams and mathematical models.                         |  |  |  |  |  |
| Unit 2 | INDUSTRIAL AUTOMATION AND CONTROL:                                                 |  |  |  |  |  |
|        | Brief introduction about industrial processes and their automation, Elements of    |  |  |  |  |  |
|        | pneumatic, hydraulic and electrical control systems, Valves and Actuators, Stepper |  |  |  |  |  |
|        | motors, PID controllers and their tuning, Implementation of digital controller,    |  |  |  |  |  |
|        | Control strategies for industrial processes, Programmable logic controller, Real-  |  |  |  |  |  |
|        | time issues on signal transmission and control, Communication systems for          |  |  |  |  |  |
|        | industrial automation, Data acquisition and Supervisory control, Control of        |  |  |  |  |  |
|        | discrete manufacturing processes, Intelligent systems for monitoring supervision   |  |  |  |  |  |
|        | and control.                                                                       |  |  |  |  |  |
| Unit 3 | HYDRAULIC SYSTEM:                                                                  |  |  |  |  |  |
|        | Characteristic of hydraulic components control valves, sources of hydraulic power, |  |  |  |  |  |
|        | hydraulic meters, pistons and transmission, Elements of circuit                    |  |  |  |  |  |

|        | design,Accumulation control circuit such as position control and speed control in<br>both directions.<br>Hydraulic Systems: Reciprocating Pump, pressure intensifier, cranes, ram,press,<br>lift, coupling and hydraulic controls. Properties of hydraulic fluids, Filters<br>regulator |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                                                                                                                                                                                         |
| Unit 4 | PNEUMATIC SYSTEMS:                                                                                                                                                                                                                                                                      |
|        | Pneumatic power supply, Amplifiers with different controlling actions, Pneumatic                                                                                                                                                                                                        |
|        | valves and cylinders, theory of four way and pilot valves.                                                                                                                                                                                                                              |
|        | ELECTRICAL SYSTEMS:                                                                                                                                                                                                                                                                     |
|        | Speed control of D.C. motors, Remote center positional serve mechanism                                                                                                                                                                                                                  |
|        | (including effect of gearing between motor and load).                                                                                                                                                                                                                                   |
|        |                                                                                                                                                                                                                                                                                         |
| Unit 5 | INSTRUMENTATION DEVICES:                                                                                                                                                                                                                                                                |
|        | Transducers used in industrial applications and their static and dynamic                                                                                                                                                                                                                |
|        | characteristics,                                                                                                                                                                                                                                                                        |
|        | Resistance transducers, Potentiometers, RTD, Thermistors, Strain gauge: Hot wire                                                                                                                                                                                                        |
|        | anemometers and their industrial applications in pressure, temperature, torque,                                                                                                                                                                                                         |
|        | force and flow measurements, Inductive transducers: LVDT, Variable reluctance                                                                                                                                                                                                           |
|        | type, Synchronous and their associated Circuits.                                                                                                                                                                                                                                        |

#### **Text and Reference Books**

1. "S.K. SINGH", "Industrial Instrumentation And Control" Tata McGraw Hill, Second edition ,2007.

2. "Williams C. Dunn", "Fundamental Industrial Instrumentation and process control" Tata McGraw Hill, Second edition ,2009.

3. Distefano J.J. & Williams I.J. "Control Systems", McGraw Hill, Third edition, 2017 4. Gopal M. "Modern Control System Theory", Second edition, New Age International Publishers,2005.

5. Ogata, "Modern Control Engineering", PHI, Eastern Economy Edition,

| Mapping | of Co | arse o | utcom | e with | Prog | ram O | utcon | ies |     |      |      |      |      |
|---------|-------|--------|-------|--------|------|-------|-------|-----|-----|------|------|------|------|
| Course  | PO1   | PO2    | PO3   | PO4    | PO5  | PO6   | PO7   | PO8 | PO9 | PO10 | PO11 | PSO1 | PSO2 |
| Outcome |       |        |       |        |      |       |       |     |     |      |      | 1    |      |
| CO1     | 1     |        | 3     |        |      |       |       |     |     |      |      | 2    |      |
| CO2     |       | 1      | 2     | 3      |      |       |       |     |     |      |      | 1    |      |
| CO3     | 1     | 2      | 3     |        |      |       |       |     |     |      |      |      |      |
| CO4     |       |        | 2     |        |      |       |       |     |     |      |      | 2    |      |

1 – High 2 – Medium 3 – Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

#### **ME 3009: POWER PLANT ENGINEERING**

| Teaching Scheme      | Examination Scheme  |            |
|----------------------|---------------------|------------|
| Lectures: 3 Hrs/Week | Class Test 1        | : 15 Marks |
| Credits: 3           | Class Test-2        | :15 Marks  |
|                      | Teachers Assessment | : 10 Marks |
|                      | End Semester Exam   | : 60 Marks |

Prerequisites: ME 1001 Basics of Mechanical Engineering, ME 2011 Applied Thermodynamics

**Course description**: After completion of the course, students will have understanding of different types of power plants, their construction and working. They will have knowledge of impact of various power plants on our environment. They will have the knowledge of different methods for the storage of energies obtained from the power plants. They will also have the knowledge of power generation economics and will be able to do the cost analysis of power plants.

#### **Course Objectives**

- 1. Define terms and factors associated with power plant economics.
- 2. Calculate present worth, depreciation cost of different types of power plants.
- 3. List types, principles of operations, components and applications of steam turbine power plants, steam generators.
- 4. Describe basic working principles of gas turbine and diesel engine power plants.
- 5. Define the performance characteristics and components of such power plants.
- 6. List the principal components and types of nuclear reactors.
- 7. Understand the basics of pollution from power plants, thermal pollution, air pollution, and its environmental effects.
- 8. Understand the various devices for energy storage.

#### **Course Outcome**

After completing the course, students will be able to:

| CO1 | Analyze the economics of power generation.                                         |
|-----|------------------------------------------------------------------------------------|
| CO2 | Explain the working power generation systems (e.g. thermal power, hydraulic power, |
|     | nuclear power).                                                                    |
| CO3 | Explain impact of power plant on environment and their remedies.                   |
| CO4 | Explain and compare various energy storage devices.                                |

| Unit 1 | Economics of Power Generation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Type of loads, demand factor, load factor, diversity factor, utilization factor, plant capacity factor, and plant use factor. Load curves, load duration curves. (Numerical) Location of power plant, Layout of power plant building. Cost analysis: capital cost, operational cost, initial cost, interest, depreciation cost. Selection of type of power generation, selection of power plant equipments, economics in plant selection, factors affecting economics of generation and distribution of power. Performance and operating characteristics of power plants, economic load sharing. |

| Unit 2 | Steam power plants:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Classification, layout of a modern steam power plant, essential requirements of steam<br>power station design, selection of site for steam power station, capacity of steam power<br>plants, choice of steam conditions. Coal handling systems, fluidized bed combustion,<br>CFBC, ash handling, dust collection, disposal and applications of fly ash, chimney<br>draught. Classification of steam turbines, energy losses in steam turbines, governing and<br>control. Super Critical Ultra Mega Power Plant                                              |
| Unit 3 | Power Plants:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | Nuclear: Atomic structure, Nuclear reaction, Nuclear stability and energy of binding, radioactive decay and half-life, heat transfer and fluid flow in nuclear reactors, types of reactors, metals for nuclear energy, advantages of nuclear power plants, site selection, safety measures, India's nuclear power program;                                                                                                                                                                                                                                  |
|        | Hydro-electric: classification, advantages and disadvantages, selection of site, hydrologic cycle, essential elements of hydroelectric power plant, comparison of hydro power station with thermal power station.                                                                                                                                                                                                                                                                                                                                           |
|        | Diesel Engine Power Plant: application, advantages and disadvantages, typed of Diesel plants, Heavy Fuel Oil Engines based power plant, essential components of Diesel engine power plants.                                                                                                                                                                                                                                                                                                                                                                 |
|        | Gas Turbines Power Plant: applications, advantages and disadvantages, site selection, layout, classification, components of gas turbines plant, gas turbine fuels, Gas Turbine materials.                                                                                                                                                                                                                                                                                                                                                                   |
| Unit 4 | Environmental Impact of Power Plant Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | Pollution from thermal power plants, Thermal pollution: sources, side effects, measurement, control. Air pollution: sources, effects on health, effects on material, gaseous emission and its control, particulate emission and its control, greenhouse effect, acid rain, acid snow, photochemical smog, dry acidic deposition, flue gas desulfurization system. Pollution from nuclear power plants: nuclear power and environment, storage and disposal of radioactive waste. Introduction to pollution control norms (refer to CPCB and SPCB websites ) |
| Unit 5 | Energy Storage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | Pumped Hydro, Compressed Air Energy Storage (CAES), Flywheel Energy storage,<br>Electrochemical Energy Storage, Magnetic Energy Storage, Thermal Energy Storage,<br>Chemical Energy Storage, Hydrogen Energy.                                                                                                                                                                                                                                                                                                                                               |

#### **Text Books**

- P K Nag, "Power Plant Engineering", Tata McGraw Hill
   R K Rajput, "Power Plant Engineering", Laxmi Publications (P) Ltd.
- 3. Arora and Domkundwar,"A Course in Power Plant Engineering", DhanpatRai& Co., Delhi

#### **Reference Books**

- 1. M. M. El Wakil, "Power plant technology", Tata McGraw Hill
- 2. S M Khopkar, "Environmental Pollution: Monitoring and Control", New Age International Publishers,
- 3. Dr B BParulekar, "Energy Technology", Khanna Publishers, Delhi
- 4. A K Raja, "Power Plant Engineering", New Age International Publishers, Delhi

| Mapping of Course outcome with Program Outcomes |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Course                                          | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| Outcome                                         |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO1                                             | 1   |     |     |     |     |     | 1   |     |     |      |      |      | 1    |      |
| CO2                                             |     |     | 3   |     | 2   |     |     |     |     |      |      |      | 2    |      |
| CO3                                             |     |     | 2   | 2   | 2   |     | 2   |     |     |      |      |      | 2    |      |
| CO4                                             | 1   |     |     | 2   |     |     |     |     |     |      |      |      | 1    |      |

#### 1 – High 2 – Medium 3 - Low

**Teacher's Assessment:** Teachers Assessment of 20 marks is based on one of the / or combination of few of following

- 1) Technical quizzes
- 3) Industrial case studies
- 4) Question & answer / Numerical solutions

#### Assessment Pattern

| Assessment  | Knowledge Level | Test 1 | Test-2 | Teachers    | End Semester |
|-------------|-----------------|--------|--------|-------------|--------------|
| Pattern     |                 |        |        | Assessment/ | Examination  |
| Level No.   |                 |        |        | Assignment  |              |
| K1          | Remember        | 03     | 03     | 03          | 12           |
| K2          | Understand      | 05     | 05     | 04          | 18           |
| K3          | Apply           | 04     | 04     | 01          | 12           |
| K4          | Analyze         | 03     | 03     | 02          | 18           |
| Total Marks | 100             | 15     | 15     | 10          | 60           |

#### Assessment table

| Assessment Tool                | K1  | K2  | K3  | K4  |
|--------------------------------|-----|-----|-----|-----|
|                                | C01 | C02 | C03 | CO4 |
| Class Test-1 (15 Marks)        | 03  | 05  | 05  | 02  |
| Class Test-2 (15 Marks)        | 03  | 05  | 05  | 02  |
| Teachers Assessment (10 Marks) | 02  | 04  | 02  | 02  |
| ESE Assessment (60 Marks)      | 12  | 18  | 12  | 18  |

**Special Instructions if any: Nil** 

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3010 : LAB-DESIGN OF MACHINE ELEMENTS-I |                           |            |  |  |  |
|--------------------------------------------|---------------------------|------------|--|--|--|
| Teaching Scheme                            | <b>Examination Scheme</b> |            |  |  |  |
| Practical : 2 Hrs/Week                     | Term Work                 | : 25 Marks |  |  |  |
| Credits: 1                                 | Practical examination     | : 25 Marks |  |  |  |

#### **Course Objective:**

To understand and apply practical application of mechanical design

#### **Course Outcome:**

As an outcome of completing the Laboratory course, students will able to:

| CO1 | Understand and apply the knowledge of machine design process for practical/real loading |
|-----|-----------------------------------------------------------------------------------------|
|     | conditions                                                                              |
| CO2 | Apply knowledge of machine design for different mechanical component like joints and    |
|     | brackets for practical/real loading conditions                                          |
| CO3 | Understand and apply the knowledge of design for different types of simple components   |
|     | and analyze its failure for practical/real loading conditions                           |
| CO4 | Apply the knowledge of design for various joints, transmission shaft, welds and riveted |
|     | joints, power screws etcand analyze its failure.                                        |
|     |                                                                                         |

### **Term Work**

Students shall complete the following practicals.

| Sr.No | Details                                                                                                                                                                                                                                                                                                    |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Design of Joint with systematic procedure of design for given loads. Drawing the assembly details<br>and the failure areas of each component of design solution. Selection of all components Material,<br>Strengths, standard dimensions, by using Design Data Hand Book and ISO standards (Use A1 sheet). |
| 2     | Drafting assembly and details of above joint by using CAD software and checking safe stresses on software.                                                                                                                                                                                                 |
| 3     | Design of Shafts subjected to direct and combined loading for practical/real loading conditions problem. Analyze design by mathematical treatment.                                                                                                                                                         |
| 4     | Design of standard welded or riveted joint for practical/real loading conditions problem, Analysis of design solution by mathematical treatment.                                                                                                                                                           |
| 5     | Design of power screw, Drawing the assembly details and the failure areas of each component for practical/real loading conditions and checking safe stresses by mathematical treatment.                                                                                                                    |

| Mapping of Course outcome with Program Outcomes |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Course                                          | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| Outcome                                         |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO1                                             | 1   | 2   |     |     |     |     |     |     |     |      |      |      | 3    |      |
| CO2                                             | 1   | 2   |     | 3   |     |     |     |     |     |      |      |      | 2    |      |
| CO3                                             | 1   | 2   | 3   |     |     | 3   |     |     | 3   |      |      |      | 3    |      |
| CO4                                             | 1   | 2   | 3   |     |     | 3   |     |     | 3   |      |      |      | 2    |      |

#### 1 – High 2 – Medium 3 – Low

#### Assessment Pattern:

| Assessment | Skill Level    | Term | Practical Examination & |
|------------|----------------|------|-------------------------|
| Pattern    |                |      |                         |
| Level No.  |                | Work | viva voce               |
| S1         | Imitation      | 05   | 05                      |
| S2         | Manipulation   | 05   | 05                      |
| <b>S</b> 3 | Precision      | 05   | 05                      |
|            | Articulatio    |      |                         |
| S4         | n              | 05   | 05                      |
| S5         | Naturalization | 05   | 05                      |
| Total      |                | 25   | 25                      |

| Preparation                  |    |    |
|------------------------------|----|----|
| (S1)                         | 05 | 05 |
| Conduct of Experiment        |    |    |
| (S2)                         | 05 | 05 |
| Observation and Analysis of  |    |    |
| Results (S3)                 | 05 | 05 |
| Record (S2)                  | 05 | 05 |
|                              |    |    |
| Presentation/ Viva-Voce (S3) | 05 | 05 |
| Total                        | 25 | 25 |

#### Assessment Table:

| Assessment Tool                              | <b>S</b> 1 | S2  | S3  | <b>S</b> 3 |
|----------------------------------------------|------------|-----|-----|------------|
|                                              | C01        | C02 | C03 | CO4        |
| Term Work (25 Marks)                         | 10         | 05  | 05  | 05         |
| Practical Examination & Viva Voce (25 Marks) | 10         | 05  | 05  | 05         |

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3011: Lab Engineering Metallurgy |                            |  |  |  |  |
|-------------------------------------|----------------------------|--|--|--|--|
| Teaching Scheme                     | Examination Scheme         |  |  |  |  |
| Practical: 2 Hrs/Week               | Term Work : 25 Marks       |  |  |  |  |
| Credit : 1                          | Practical Examination      |  |  |  |  |
|                                     | And Viva – Voce : 25 Marks |  |  |  |  |
|                                     |                            |  |  |  |  |
| Course Outcome                      |                            |  |  |  |  |

.

. . .

•

.

As an outcome of completing the Laboratory course, students will able to:

| CO1 | Understand different crystal systems and various calculation included in the study of |
|-----|---------------------------------------------------------------------------------------|
|     | crystal system.                                                                       |
| CO2 | Use of metallurgical microscope to observe the microstructures.                       |
| CO3 | Understand the significance of observation of microstructure of plain carbon steels / |
|     | Alloy steels.                                                                         |
| CO4 | Interpret and observe microstructure of Cast Iron/ Non Ferrous Alloys.                |
| CO5 | Study the change in mechanical properties due to heat treatment.                      |
| CO6 | Study of change in structure due to surface/ case hardening of steels.                |

#### **List of Experiments**

| Sr. No. | Details                                                                       |
|---------|-------------------------------------------------------------------------------|
| 1.      | Observation of the different Crystal Systems                                  |
| 2.      | Operation of Metallurgical Microscope                                         |
| 3.      | Observation of Microstructure of the Plain Carbon Steels                      |
| 4.      | Observation of Microstructure of Alloy Steels                                 |
| 5.      | Observation of Microstructure of Cast Iron                                    |
| 6.      | Observation of Microstructure of the Non Ferrous alloys                       |
| 7.      | Study of changes in the mechanical properties due to heat treatment           |
| 8.      | Study of the change in the structure due to surface/ case hardening of steels |

#### Mapping of Course Outcome with Program Outcomes

| Course | РО | PO | PO1 | PO1 | PO1 | PSO | PSO |
|--------|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|
| Outco  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0   | 1   | 2   | 1   | 2   |
| me     |    |    |    |    |    |    |    |    |    |     |     |     |     |     |
| CO1    |    |    |    |    |    | 2  |    |    |    |     |     |     | 1   |     |
| CO2    |    |    |    | 2  |    | 1  |    |    |    |     |     |     |     |     |
| CO3    |    |    |    | 2  |    |    |    |    |    |     |     |     | 1   |     |
| CO4    |    |    |    | 2  |    |    |    |    |    |     |     |     | 2   |     |
| CO5    |    |    |    |    |    | 2  |    |    |    |     |     |     | 1   |     |
| C06    |    |    |    |    |    | 2  |    |    |    |     |     |     |     |     |

1-High 2- Medium 3- Low

#### **Assessment Pattern**

| Assessment    | Skill Level    | Term work | Practical     |
|---------------|----------------|-----------|---------------|
| Pattern Level |                |           | Examination & |
| No.           |                |           | Viva Voce     |
| S1            | Imitation      | 05        | 05            |
| S2            | Manipulation   | 10        | 10            |
| S3            | Precision      | 10        | 10            |
| S4            | Articulation   | 00        | 00            |
| S5            | Naturalization | 00        | 00            |
|               | Total          | 25        | 25            |

| Preparation (S1)             | 05 | 05 |
|------------------------------|----|----|
| Conduct of Experiment (S2)   | 05 | 05 |
| Observation and Analysis of  | 05 | 05 |
| Results (S3)                 |    |    |
| Record (S2)                  | 05 | 05 |
| Presentation/ Viva Voce (S3) | 05 | 05 |
| Total                        | 25 | 25 |

#### Assessment Table

| Assessment Tool                    | <b>S</b> 1 | S2  | <b>S</b> 3 | <b>S</b> 3 |
|------------------------------------|------------|-----|------------|------------|
|                                    | CO1        | C02 | CO3/CO4    | C05/CO6    |
| Term Work (25 Marks)               | 05         | 10  | 05         | 05         |
| Practical Examination & Viva Voce( | 05         | 10  | 05         | 05         |
| 25 Marks )                         |            |     |            |            |

ć

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

#### ME 3012: LAB-FLUID MECHANICS AND HYDRAULIC MACHINES

| Teaching Scheme       | Examination Scheme              |              |  |  |  |  |
|-----------------------|---------------------------------|--------------|--|--|--|--|
| Practical: 2 Hrs/Week | Term Work                       | : 25 Marks   |  |  |  |  |
| Credit: 1             | Practical Examination & Viva Vo | ce :25 Marks |  |  |  |  |

#### **Course Outcome**

As an outcome of completing the Laboratory course, students will able to:

| CO1 | Ability enhancement in practical determination of fluid viscosities and to decide the flow patterns           |
|-----|---------------------------------------------------------------------------------------------------------------|
| CO2 | Ability enhancement in applying Bernoulli's theorem & momentum principle to various flow patterns             |
| CO3 | Ability enhancement in applying theoretical knowledge to find the performance of different turbines and pumps |

### List of Experiments in fluid mechanics

| Sr. No. | Details                                                              |
|---------|----------------------------------------------------------------------|
| 1       | Experiment on Red wood viscometer                                    |
| 2       | Experiment on Reynolds's apparatus                                   |
| 3       | Experiment on Bernoulli's theorem                                    |
| 4       | Experiment on flow measurement by orifice &venturimeter              |
| 5       | Experiment on verification of momentum principle                     |
| 6       | Experiment on determination of force due to impact of jet            |
| 7       | Experiment on determination of metacentric height of a floating body |
| 8       | Experiment on flow through pipes                                     |

#### List of experiments in fluid machines

| Sr. No. | Details                              |
|---------|--------------------------------------|
| 1       | Trial on Pelton wheel                |
| 2       | Trial on Francis turbine             |
| 3       | Trial on Kaplan turbine              |
| 4       | Trial on centrifugal pump            |
| 5       | Trial on gear pump                   |
| 6       | Trial on torque converter            |
| 7       | Trial on reciprocating pump          |
| 8       | Visit to hydroelectric power station |

#### Term work

The term work will consist of submitting a file for all the experiments with neatly written records of the study and diagrams.
The term work will be assessed by the course coordinator

# **Practical Examination**

The Practical Examination will comprise of performing the experiment and viva voce on the syllabus

The practical will be assessed by two examiners, one will be the course coordinator and other will be examiner appointed by BOS

# Mapping of Course outcome with Program Outcomes

| Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcom |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| e      |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO1    | 3   | 1   | 2   |     |     | 1   | 3   | 3   |     |      |      |      | 1    |      |
| CO2    | 2   | 2   | 1   |     |     | 2   |     |     |     |      |      |      | 2    |      |
| CO3    | 2   | 3   | 1   |     | 3   | 2   | 3   |     |     |      |      |      | 1    |      |

1 - High 2 - Medium 3 - Low

#### Assessment Pattern

| Assessment        | Skill Level    | Term | Practical Examination & |
|-------------------|----------------|------|-------------------------|
| Pattern Level No. |                | Work | viva voce               |
| S1                | Imitation      | 05   | 05                      |
| S2                | Manipulation   | 10   | 10                      |
| <b>S</b> 3        | Precision      | 10   | 10                      |
| S4                | Articulation   | 00   | 00                      |
| S5                | Naturalization | 00   | 00                      |
| Total             |                | 25   | 25                      |

| Preparation (S1)                         | 05 | 05 |
|------------------------------------------|----|----|
| Conduct of Experiment (S2)               | 05 | 05 |
| Observation and Analysis of Results (S3) | 05 | 05 |
| Record (S2)                              | 05 | 05 |
| Presentation/ Viva-Voce (S3)             | 05 | 05 |
| Total                                    | 25 | 25 |

## **Assessment Table**

| Assessment Tool      | <b>S</b> 1 | S2  | <b>S</b> 3 |
|----------------------|------------|-----|------------|
|                      | C01        | C02 | CO3        |
| Term Work (25 Marks) | 10         | 10  | 05         |

| Practical Examination & Viva Voce (25 Marks) | 05 | 10 | 10 |
|----------------------------------------------|----|----|----|
|                                              |    |    |    |

| ME 3013: Lab Computer Application In Mechanical Engineering-II and Mini Project |                                   |             |  |  |  |
|---------------------------------------------------------------------------------|-----------------------------------|-------------|--|--|--|
| Teaching Scheme                                                                 | Examination Scheme                |             |  |  |  |
| Practical: 2 Hrs/Week                                                           | Term Work                         | : 25 Marks  |  |  |  |
| Credit: 1                                                                       | Practical Examination & Viva Voce | e :25 Marks |  |  |  |

# Course Outcome: Able to-

| CO1 | Identify different modelling and analysis of Mechanical Products. |  |  |
|-----|-------------------------------------------------------------------|--|--|
| CO2 | Recognize the mechanical parts and choose to form 3D modelling.   |  |  |
| CO3 | Solve linear problem by making 3D model.                          |  |  |
| CO4 | Create and analyse 3D model of product.                           |  |  |

| Sr. No. | Details                                                                                  |
|---------|------------------------------------------------------------------------------------------|
| 1       | 3D Modelling and analysis/ Generative Structural Analysis of mechanical components       |
|         | like bend Rod, I section beam, Rectangular beam etc on any of the available 3D           |
|         | modelling software/Computer-Aided Engineering (CAE) simulation software platform.        |
|         | 1) FEA concepts,                                                                         |
|         | 2) Meshing (pre-processing)                                                              |
|         | 3) Analysis case setup (post processing)                                                 |
|         | 4) Results and evaluation                                                                |
| 2       | The Mini Project based on above modelling, simulation and analysis. The student shall    |
|         | apply this knowledge to evaluate a product and assess different specification of product |
|         | by modelling and simulation. The student creativity shall be encourage in deciding Mini  |
|         | Projects.                                                                                |
|         |                                                                                          |

# Mapping of Course outcome with Program Outcomes

| Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcom |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| e      |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO1    | 1   | 2   | 3   |     |     |     |     |     |     |      |      |      | 1    |      |
| CO2    | 2   | 1   | 3   |     |     |     |     |     |     |      |      |      | 2    |      |
| CO3    | 3   | 2   | 1   |     |     |     |     |     |     |      |      |      | 1    |      |
| CO4    | 2   | 2   | 1   |     |     |     |     | 2   |     |      |      |      |      |      |

1 – High 2 – Medium 3 - Low

# **Assessment Pattern**

| Assessment<br>Pattern Level No. | Skill Level    | Term<br>Work | Practical Examination & viva voce |
|---------------------------------|----------------|--------------|-----------------------------------|
| <b>S</b> 1                      | Imitation      | 05           | 05                                |
| S2                              | Manipulation   | 10           | 10                                |
| <b>S</b> 3                      | Precision      | 10           | 10                                |
| S4                              | Articulation   | 00           | 00                                |
| S5                              | Naturalization | 00           | 00                                |
| Total                           |                | 25           | 25                                |

| Preparation (S1)                         | 05 | 05 |
|------------------------------------------|----|----|
| Conduct of Experiment (S2)               | 05 | 05 |
| Observation and Analysis of Results (S3) | 05 | 05 |
| Record (S2)                              | 05 | 05 |
| Presentation/ Viva-Voce (S3)             | 05 | 05 |
| Total                                    | 25 | 25 |

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| HS3001: INDUSTRIAL ORGANIZATION AND MANAGEMENT |                                 |  |  |  |
|------------------------------------------------|---------------------------------|--|--|--|
| Teaching Scheme                                | Examination Scheme              |  |  |  |
| Lectures: 3 hrs/week                           | Class Test 1 – 15 marks         |  |  |  |
| Credits : 3                                    | Class Test 2 – 15 marks         |  |  |  |
|                                                | Teacher's Assessment – 10 Marks |  |  |  |
|                                                | End Sem Exam -60 Marks          |  |  |  |

# **Course Objectives**

1. Students are able to understand the evolution of management thought

2. Students will be able to understand the premises of administrative behaviour and decision making required for proper motivation of employees .

3. Capable to understand the different functions and structure of management

4. Capable to understand various concepts and practices in personnel administration

5. Able to understand and compare the management in developed and developing countries and the effect of environment on management.

# **Course Outcomes**

1. Explain and apply principles of scientific management.

- 2. Explain and apply theories of motivation.
- 3. Explain various methods of recruitment and trainings.
- 4. Explain organizational structure and principles.

# **Detailed Syllabus**

**Unit** –1: Theories of Management Scientific Management (Taylor and the Scientific Management Movement), Classical Theory (Fayol, Urwick, Gulick and others) Bureaucratic Theory (Weber and his critics). Ideas of Mary Parker Follett and C.I. Barnard; Human Relations School (Elton Mayo and others). Behavioral Approach, Systems approach.

**Unit-2**: Administrative Behaviour, Decision making with special reference to H. Simon, communication and control, leadership theories. Theories of motivation (Maslow and Herzberg)

**Unit-3**: Organisation Hierarchy, Principles of organization- Unity of command, Span of control, Authority and Responsibility, Co-ordination, Centralization and Decentralization, Delegation, Supervision, Types of organizations, structures

**Unit–4**: Personnel Administration, Position classification, Recruitment, Training, Promotion, Pay and Service conditions, Administrative Ethics

**Unit-5**: Administrative Systems Comparative management features of USA, Great Britain, France and Japan (Riggs concept)

# **Text Books**

1. Organisational Behaviour, Stephen P. Robbin , pearson education

2. O. P. Khanna, "Industrial Organization and Management, Khanna Publications

3. D. Ravindra Prasad and V. S. Prasad, Admistrative Thinkers, Sterling Publishers, New Delhi 4.Public administration and Public affairs, Nicholas Henry, Routledge

# **Reference Books**

1.Management of Organizational Behaviour2nd Edition by <u>Paul Hersey</u>, <u>Kenneth H. Blanchard</u>, Prentice-Hall

2.D. Gvishiyani, Organisation and Management, Progress Publishers, Moscow

Teacher's Assessment:

Teachers Assessment of 10 marks is based on one of the / or combination of few of following

1) Student's Presentation on related topics

2) Industrial Interaction

3) Case study

# Mapping of Course out come with programme outcome

| Course  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcome |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO1     |     |     | 3   |     |     |     |     |     |     | 2    |      |      | 2    |      |
| CO2     |     |     |     | 2   |     |     | 2   |     | 2   |      |      |      | 2    |      |
| CO3     |     | 2   |     |     |     | 3   |     | 3   |     |      |      |      | 2    |      |
| CO4     |     |     |     |     | 3   |     |     |     |     | 1    |      |      | 2    |      |
| C05     |     | 3   |     |     |     |     |     |     |     |      |      |      | 2    |      |

**Assessment Pattern** 

| Assessment      | Knowledge  | Test | Teachers    | End Semester |
|-----------------|------------|------|-------------|--------------|
| Pattern Level   | Level      |      | Assessment/ | Examination  |
| No.             |            |      | Assignment  |              |
| K1              | Remember   | 05   | 02          | 10           |
| K2              | Understand | 10   | 02          | 10           |
| K3              | Apply      | 10   | 02          | 20           |
| K4              | Analyze    | 05   | 02          | 20           |
| K5              | Evaluate   | 00   | 02          | 00           |
| K6              | Create     | 00   | 00          | 00           |
| Total Marks 100 |            | 30   | 10          | 60           |

#### Assessment table

| Assessment Tool | K1  | K2  | K3  | K4  | K5  |
|-----------------|-----|-----|-----|-----|-----|
| COs             | CO1 | CO2 | CO3 | CO4 | CO5 |
| Class Test      | 06  | 07  | 05  | 06  | 06  |
| (15+15 Marks)   |     |     |     |     |     |
| Teachers        | 02  | 03  | 01  | 02  | 02  |
| Assessment      |     |     |     |     |     |
| (10 Marks)      |     |     |     |     |     |
| ESE Assessment  | 12  | 05  | 10  | 15  | 18  |

| (60 Marks) |  |  |
|------------|--|--|
|------------|--|--|

| AC3001: Basics of Product Survey |                    |  |  |  |  |  |
|----------------------------------|--------------------|--|--|--|--|--|
| Teaching Scheme                  | Examination Scheme |  |  |  |  |  |
| Practical: 2 hrs/week            | Audit Course       |  |  |  |  |  |

#### **Course Objectives**

- 1. To cultivate symbiotic relationship between industry and institute
- 2. To provide experience in valuation of engineering products
- 3. Interaction with Industry

#### **Course Outcomes**

- 1. Awareness about the various valuation methods
- 2. Insight of what is a proper value engineering product
- 3. Knowing the process involved in the designing of a value product

#### Term Work:

Student has to undertake a detailed survey of following engineering products

- (1) Successful/failed products in the market and accessing the reasons for it
- (2) Projections for a future vale product with proper data support.

The students will conduct industrial and market visits for surveying various engineering products. They will be preparing a detailed report with drawings, technical and fundamental analysis etc of the products surveyed with proper justification.

#### **Reference Books**

1. Philips kottler Marketing Management

#### Mapping of Course out come with programme outcome

| Course<br>Outcom<br>e | PO<br>1 | PO<br>2 | PO<br>3 | PO<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | PO<br>9 | PO1<br>0 | PO1<br>1 | PO1<br>2 | PSO<br>1 | PSO<br>2 |
|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|
| CO1                   |         |         | 3       |         |         | 3       |         |         |         |          |          |          | 1        |          |
| CO2                   |         |         | 2       |         | 2       | 2       |         |         |         |          |          |          | 2        |          |
| CO3                   |         | 2       | 2       |         |         | 3       |         |         |         |          |          |          | 1        |          |

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3014: HEAT AND MASS TRANSFER |                             |            |  |  |  |  |  |
|---------------------------------|-----------------------------|------------|--|--|--|--|--|
| Teaching Scheme                 | <b>Examination Scheme</b>   |            |  |  |  |  |  |
| Lectures: 2Hrs/Week             | Class Test-I                | : 15 Marks |  |  |  |  |  |
| Tutorial: 1 hr/week             | Class Test-II               | : 15 Marks |  |  |  |  |  |
| Total Credits : 03              | <b>Teachers Assessment:</b> | 10Marks    |  |  |  |  |  |
|                                 | End Semester Exam           | : 60 Marks |  |  |  |  |  |

Prerequisites: ME1001-Basics of Mechanical Engineering

**Course description**: After completion of the course, students will have understanding of Steady state heat conduction, Unsteady state heat conduction, Fins, Various types of Fins Convection Radiation and Heat Exchanger and mass transfer.

# **Course Objectives:**

- 1. Understand the different laws and mechanisms of different modes of heat transfer like conduction, convection and radiation.
- 2. Understand to analyse the steady state and unsteady state conduction mode of heat transfer.
- 3. Understand the need, application and performance evaluation of various types of fins.
- 4. Understand the construction, working and performance of different heat exchangers.

# **Course Outcome**

After completing the course, students will be able to:

| CO1        | Explain the modes and principles of heat and mass transfer.                         |
|------------|-------------------------------------------------------------------------------------|
| CO2        | Compute temperature distribution in steady state and unsteady state best conduction |
| 02         | Compute temperature distribution in steady state and unsteady state near conduction |
| CO3        | Analyze heat transfer through extended surfaces                                     |
| <b>CO4</b> | Interpret and analyze forced and free convection heat transfer                      |
|            |                                                                                     |
| CO5        | Design heat exchangers using LMTD and NTU methods                                   |

# **Detailed Syllabus:**

| Unit 1 | Steady State Heat Conduction                                                                 |
|--------|----------------------------------------------------------------------------------------------|
|        | Modes of heat transfer, basic laws governing modes of heat transfer, general three           |
|        | dimensional heat conduction equation in Cartesian and cylindrical co-ordinates,              |
|        | simplification to steady state, unidirectional heat transfer equation and temperature        |
|        | distribution equation, with and without internal heat generation for simple case like slabs, |
|        | cylinders & spheres; electrical analogy, contact resistance, composite system, critical      |
|        | thickness of insulation, illustrative examples                                               |
| Unit 2 | Unsteady State Heat Conduction & Fins                                                        |
|        | Lumped heat capacity system, Biot number, unsteady state heat transfer for lumped            |

|         | capacity system, time constant of thermocouples, illustrative examples. Definition, need,   |
|---------|---------------------------------------------------------------------------------------------|
|         | types of extended surfaces, temperature distribution equations and heat transfer equations  |
|         | for pin fins and rectangular circumferential fins with various end conditions, fin          |
|         | efficiency, fin effectiveness, thermometric error using fin theory, illustrative examples   |
|         | Two dimensional heat conduction with numerical method for solution.                         |
| Unit 3  | Convection                                                                                  |
|         | Thermal boundary layer, heat transfer in flow through pipe, entry length, heat transfer in  |
|         | high speed flow, free and forced convection over vertical / horizontal plate, pipe/cylinder |
|         | and sphere using empirical relations only, cup temperature; pool boiling, Nusselt theory    |
|         | of condensation, film-wise/drop-wise condensation, heat transfer through pipe at constant   |
|         | temperature & constant heat flow, illustrative examples                                     |
| Unit 4  | Radiation                                                                                   |
|         | Mechanism of radiation, thermal radiation, definitions like black body, white body, grey    |
|         | body, reflectivity, absorptive, transmitivity, emissivity, emissive power, monochromatic    |
|         | emissive power, solid angle, intensity of radiation, radioity, irradiation Lambert's cosine |
|         | law, Kirchhoff's law, Plank's distribution law, Wien's displacement law, radiation shape    |
|         | factor for geometrical arrangements, electrical analogy, radiative heat transfer between    |
|         | two large grey surfaces placed at distance with different temperature, heat transfer        |
|         | between concentric cylinders, spheres with different temperature, use of radiation shields, |
|         | errors in thermo couple reading in radiative heat transfer, illustrative examples           |
| Unit 5  | Heat Exchangers and Mass transfer                                                           |
|         | Introduction, classification, parallel flow and counter flow heat exchangers, applications, |
|         | fouling and fouling factors, overall heat transfer coefficient, LMTD method, NTU            |
|         | effectiveness method of design, pressure drop, optimizations, design by LMTD method         |
|         | for condensers, illustrative examples, Compact heat exchanger: plat-fin type heat           |
|         | exchanger.                                                                                  |
|         | Introduction to mass transfer, Fick's law, dimensionless numbers: Sherwood, Schmidt,        |
|         | Peclet, Rayleigh                                                                            |
| Text Bo | aks                                                                                         |

1. Sukhatme S. P., "A text book of Heat Transfer", Universities Press (Pvt Ltd), Hyderabad

2. Holman J. P., "Heat transfer", McGraw Hill Publishing, New York

3. Sucec James, "Heat transfer", JAICO publication house, New Delhi

# **Reference Books**

1. Sachdeva R. C., "Fundamentals of Engineering Heat and Mass Transfer", New Age Science Limited, Delhi

2. Frank Kreith, "Principles of Heat transfer", Cengage Learning, New York

3. Kothandraman, "Heat and Mass transfer Data Book" New Age International Publication, Delhi

4. Thirumaleshwar M., "Fundamentals of Heat and Mass Transfer", Pearson Education., New Delhi

# Mapping of Course Outcomes with program Outcomes

| <b>Course Outcome</b> | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-----------------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|
| CO1                   | 1   | 2   |     |     |     |     |            |     |     |      |      |      | 1    |      |
| CO2                   | 2   |     | 1   |     |     |     |            |     |     |      |      |      | 1    |      |
| CO3                   |     | 3   | 2   |     |     |     |            |     |     |      |      |      | 2    |      |
| CO4                   |     |     | 1   |     |     |     |            |     |     |      |      |      | 1    |      |
| CO5                   | 1   |     |     | 2   |     |     |            |     |     |      |      |      |      |      |

| 1–High              | 2–Medium                               | 3-Low |                      |            |  |  |  |  |  |  |  |
|---------------------|----------------------------------------|-------|----------------------|------------|--|--|--|--|--|--|--|
|                     | ME 3015: METROLOGY AND QUALITY CONTROL |       |                      |            |  |  |  |  |  |  |  |
| <b>Teaching Sch</b> | neme                                   |       | Examination Scheme   | e          |  |  |  |  |  |  |  |
| Lectures: 3 H       | rs./Week                               |       | Class Test-1         | :15 Marks  |  |  |  |  |  |  |  |
| Tutorial: H         | r./Week                                |       | Class Test-2         | :15 Marks  |  |  |  |  |  |  |  |
| Credits: 3          |                                        |       | Teacher's Assessment | t:10 Marks |  |  |  |  |  |  |  |
|                     |                                        |       | End Semester Exam    | : 60 Marks |  |  |  |  |  |  |  |

Pre-requisites: ME1001:Basics Of Mechanical Engineering, BS1001: Engineering Physics,

## **Course Description:**

The course is aimed at giving the fundamentals of quality assurance methods for manufacturing processes and dimensional measuring systems. In particular, the course focuses on: introduction to quality management systems, measurement management systems, requirements for measurement processes and measuring equipment, geometrical products specifications & verification, dimensional & geometrical metrology, coordinate metrology, surface metrology.

# **Course Objectives:**

- 1. To determine measuring instruments capabilities
- 2. To introduce measuring instruments used for linear and angular measurement
- 3. To introduce concept of limits and fits for engineering applications
- 4. To study Various comparative measurements
- 5. To study Control chart techniques in quality control
- 6. To study Purpose and use of sampling and its benefits

#### **Course outcomes:** At the end of the course, the student will be able to:

| CO1 | Define and explain principles and methods of measurements.   |
|-----|--------------------------------------------------------------|
| CO2 | Define and explain limits, fits and gauges.                  |
| CO3 | Explain and compare the different comparators                |
| CO4 | Explain principles of quality control and quality systems.   |
| CO5 | Prepare and evaluate control charts for various application. |

#### **Detailed Syllabus:**

| Unit | Definition and concept of metrology and standardizations, International system of |
|------|-----------------------------------------------------------------------------------|
| 1    | units, Methods of measurements, Standards of measurements: standards of linear    |
|      | measurement, Line standard including linear standard meter, End standard,         |
|      | wavelength standard, Classification of standards of traceability,                 |
|      |                                                                                   |
|      | Linear measurements: Surface palate, angle plate, V-block, Bench centers,         |
|      | Combination set, radius gauges, Feeler gauges, Angle gauges, Pitch screw gauge,   |

|                       | Principle of venires, venire height gauge, venire depth gauge, Micrometers, Types of micrometers, Slip gauges, wringing of slip gauges, care in use of slip gauges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>T</b> T <b>1</b> / |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Unit                  | Limits and Fits:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2                     | Limits: Tolerances, different ways of expressing accumulation, relationship between tolerances and cost, maximum and minimum metal conditions, Indian standard (IS 919-1963)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | Fits: Terminology for limits and fits, types of fits, hole basis system, shaft basis system, selection of fits, types of assemblies like trial and error, interchangeable assembly,                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | <b>Gauges</b> : Plain gauges, ring gauges, snap gauges, adjustable gap gauges, control and profile gauges, material for gauges, Gauge design: Taylor's principle, gauge maker's tolerance, wear allowances, numerical on gauge design                                                                                                                                                                                                                                                                                                                                                                                                             |
| Unit<br>3             | <b>Comparators:</b> Introduction, types of comparators, construction and working of different types of comparators like mechanical, optical, electric, pneumatic, Angular measurements: Venire bevel protector, universal bevel protector, sine bar, angle gauges, optical instrument like auto collimator, angle dekkor Measurement of surface finish: Definition, terminology, methods of measuring surface finish, Analysis of surface traces, assessment of surface roughness as per Indian standards, Metrology of screw threads: Screw threads terminology, error in threads and their effects, measurements of various elements of threads |
| Unit                  | Quality Control: Quality: Definitions, meaning of quality of product & services,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4                     | Quality characteristics, Quality of design, Quality of conformance, Quality of performance, Concept of reliability, Cost, Quantity assurance, Cost of rework & repair, Quality & Inspection, Inspection stages. ISO 9000 Series & other standards: Concept, ISO 9000 series quality standards, QS14000, Standards in general, Its evaluation & Implications, necessity of ISO certification, other Quality systems                                                                                                                                                                                                                                |
| Unit                  | Statistical Quality Control - Meaning and importance of SQC, Variable and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5                     | attribute Measurement. control charts – inherent and assignable sources of variation, control charts for variables – X & R charts, 25 control charts for attributes p, np, C charts, process capability of machine, determination of statistical limits, different possibilities, Rejection area, Statistically capable and incapable processes, Cp, Cpk. <b>Acceptance Sampling</b> – Concept, Comparison with 100% inspection, Different types of sampling plans, with merits and demerits, OC curve, It's importance and significance, Producers risk, Consumer's risk, AQL, AOQL, IQL, LTPD                                                   |

## **Text Books**

- 1. Jain R. K., "Engineering Metrology", Khanna Publishers, Delhi
- 2. Gupta I. C., A Text book of Engineering Metrology, DhanpatRai and Sons.

# **Reference Books**

- 1. ASTE, Handbook of Industrial Metrology, PHI Publications.
- 2. Grant and Leavenworth," Statistical Quality Control", McGraw Hill publication
- 3. Quality Control, NITTTR Madras, Tata McGraw Hill Publishing Ltd.
- 4. Hume K J, "Engineering Metrology", Macdonald & Company Limited, London

## Mapping of Course outcome with Program Outcomes

|        | 9   |     |     |     | 0   |     |            |     |     |      |      |      |     |     |
|--------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|-----|-----|
| Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO | PSO |
| Outcom |     |     |     |     |     |     |            |     |     |      |      |      | 1   | 2   |
| e      |     |     |     |     |     |     |            |     |     |      |      |      |     |     |
| CO1    | 1   |     |     |     | 2   | 2   |            |     |     |      |      |      | 1   |     |
| CO2    |     |     |     |     | 2   | 2   | 3          |     |     |      |      |      | 2   |     |
| CO3    |     |     |     |     | 2   | 2   |            |     |     |      |      |      | 1   |     |
| CO4    | 1   |     | 2   |     |     |     |            |     |     |      |      |      | 2   |     |
| CO5    | 1   |     | 2   | 2   | 2   | 3   |            |     |     |      |      |      |     |     |

# 1 – High 2 – Medium 3 – Low

**Teacher's Assessment:** Teachers Assessment of 20 marks is based on one of the / or combination of few of following

- 1) Question & answer / Numerical solution
- 2) Presentation of case studies
- 3) Study of Industrial processes and its presentation
- 4) Quiz

#### Assessment Pattern

| Assessment         | Knowledge Level | Test-1 | Test-2 | Teachers    | End Semester |
|--------------------|-----------------|--------|--------|-------------|--------------|
| Pattern            |                 |        |        | Assessment/ | Examination  |
| Level No.          |                 |        |        | Assignment  |              |
| K1                 | Remember        | 03     | 03     | 03          | 10           |
| K2                 | Understand      | 05     | 05     | 02          | 10           |
| K3                 | Apply           | 02     | 02     | 03          | 20           |
| K4                 | Analyze         | 05     | 05     | 02          | 20           |
| K5                 | Evaluate        | 00     | 00     | 00          | 00           |
| K6                 | Create          | 00     | 00     | 00          | 00           |
| <b>Total Marks</b> | 100             | 15     | 15     | 10          | 60           |

# Assessment table

| Assessment Tool                | K1  | K2  | K3  | K4  | K3  | K2  |
|--------------------------------|-----|-----|-----|-----|-----|-----|
|                                | CO1 | CO2 | CO3 | CO4 | CO5 | CO6 |
| Class Test (15 Marks)          | 03  | 02  | 03  | 03  | 02  | 02  |
| Class Test (15 marks)          | 03  | 02  | 03  | 03  | 02  | 02  |
| Teachers Assessment (10 Marks) | 02  | 01  | 01  | 04  | 01  | 01  |
| ESE Assessment (60 Marks)      | 10  | 05  | 10  | 20  | 10  | 05  |

Special Instructions if any: Nil

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME3016: INDUSTRIAL ENGINEERING |                              |  |  |  |  |  |
|--------------------------------|------------------------------|--|--|--|--|--|
| Teaching Scheme                | Examination Scheme           |  |  |  |  |  |
| Lectures: 2hrs/week            | Class Test $1 - 10$ marks    |  |  |  |  |  |
| Credits : 2                    | Class Test $2 - 10$ marks    |  |  |  |  |  |
|                                | Teacher's Assessment- 5marks |  |  |  |  |  |
|                                | End Sem Exam- 25Marks        |  |  |  |  |  |

## **Course Objectives**

1) To study the basics and details of Production, planning and control

2) To understand the use of work study, method study and Time study analysis related to production

3) To enable students to do the material and purchase management and inventory control

4) To study about the Plant location and lay outs

5) To enable to use the Demand forecasting and Production information system

# **Course Outcomes**

- 1. Explain principles of PPC.
- 2. Apply methods of motion and time study for industrial problems.
- 3. Explain and apply principles of material management and inventory control.
- 4. Analyze the plant location and design the plant layout.
- 5. Select and apply forecasting method for particular application.

1) To provide an introductory course in Production.

2) To present the student with an overall view of the decision-making process as it relates to the major areas of Production.

3) To present the principles of operations economies (how to employ labor materials, machines, and capital) in a balance to match the changing relative values of the basic components.

4) The course will provide students with knowledge that can be applied in an industry for production planning and scheduling,

5) To be able to forecast and plan production activities effectively.

# **Detailed Syllabus**

**Unit - 1**: Production Planning & Control (PPC) Introduction, need, objectives, phases, functions of PPC, aggregate planning, master production schedule, capacity planning, measurement of capacity, process of capacity planning, routing, techniques of routing, scheduling, objectives of scheduling, scheduling methodology, loading, production control, objectives of production control, techniques of production control.

Unit - 2: Work Study Introduction, advantages of work study, method study, objectives of method study, scope of method study, steps involved in method study, charts used in method

study, motion study, principles of motion study, recording techniques of motion and study, work measurement, objectives of work measurement, techniques of work measurement, time study, computation of standard time, introduction to MOST

**Unit - 3**: Materials Management Introduction and meaning, objectives of materials management, importance of materials management, purchasing, purchasing procedure, reasons for keeping inventory, inventory control, benefits of inventory control, standardization, simplification, value analysis

**Unit - 4**: Plant Location: Introduction, importance of plant location, dynamic nature of plant location, factors responsible for plant location, location analysis Layout Planning: Introduction and meaning, objectives of layout, principles of plant layout, advantages of good layout, types of layout, techniques of plant layout, features of good layout, factors relevant for the choice of layout, revising and improving plant layout

**Unit - 5**: Demand Forecasting: Introduction, objectives of demand forecasting, importance of demand forecasting, steps in forecasting, techniques of forecasting, other methods of forecasting Production Information System: Introduction, fundamentals of production information system, production planning system, production control system, materials management information systems Reliability: Introduction, Concepts and applications in Engineering

# **Text Books**

 K C Jain, L N Agrawal, "Production, Planning and Control", Khanna publishers, Delhi.
S. N. Chary, "Production and Operations Management", Tata Mc-Graw Hill Publishing Company Limited, New Delhi

3. Dr. B. S. Goel, "Production Operations Management", PragatiPrakashan, Meerut, India

# **Reference Books**

S. Anil Kumar, "Production and Operations Management", New Age International Publishers.
"Introduction to Work Study", ILO, Geneva

3. Everett E. Adam, Jr, Ronald J. Ebert, "Production and Operations Management", Prentice Hall of India, Private Limited, New Delhi

# **Teacher's Assessment:**

Teachers Assessment of 10 marks is based on one of the / or combination of few of following

- 1) Student's Presentation on related topics
- 2) Industrial Interaction
- 3) Case study

# Mapping of Course out come with programme outcome

| Course  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcome |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO1     |     |     |     | 3   |     |     |     |     |     |      |      |      | 2    |      |
| CO2     |     |     |     |     | 2   |     | 2   |     | 2   |      |      |      | 1    |      |
| CO3     |     | 2   |     |     |     | 3   |     |     |     |      |      |      | 2    |      |
| CO4     |     |     |     |     | 3   |     |     |     |     |      |      |      | 2    |      |
| C05     |     | 3   |     |     |     |     |     |     |     |      |      |      | 2    |      |

# **Assessment Pattern**

| Assessment      | Knowledge  | Test | Teachers    | End Semester |
|-----------------|------------|------|-------------|--------------|
| Pattern Level   | Level      |      | Assessment/ | Examination  |
| No.             |            |      | Assignment  |              |
| K1              | Remember   | 05   | 01          | 5            |
| K2              | Understand | 05   | 01          | 10           |
| K3              | Apply      | 05   | 01          | 5            |
| K4              | Analyze    | 05   | 01          | 5            |
| K5              | Evaluate   | 00   | 01          | 00           |
| K6              | Create     | 00   | 00          | 00           |
| Total Marks 100 |            | 20   | 5           | 25           |

# Assessment table

| Assessment Tool | K1  | K2  | K3  | K4  | K5  |
|-----------------|-----|-----|-----|-----|-----|
| COs             | CO1 | CO2 | CO3 | CO4 | CO5 |
| Class Test      | 04  | 04  | 04  | 04  | 04  |
| (10+10 Marks)   |     |     |     |     |     |
| Teachers        | 01  | 01  | 01  | 01  | 01  |
| Assessment      |     |     |     |     |     |
| (5 Marks)       |     |     |     |     |     |
| ESE Assessment  | 05  | 05  | 05  | 05  | 05  |
| (25 Marks)      |     |     |     |     |     |

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3017 : Mechanical Measurement |                                |  |  |  |  |  |
|----------------------------------|--------------------------------|--|--|--|--|--|
| Teaching Scheme                  | Examination Scheme             |  |  |  |  |  |
| Lectures: 2Hrs/Week              | Class Test-I : 10 Marks        |  |  |  |  |  |
| Total Credits : 02               | Class Test-II : 10 Marks       |  |  |  |  |  |
|                                  | Teachers Assessment: : 05Marks |  |  |  |  |  |
|                                  | End Semester Exam : 25 Marks   |  |  |  |  |  |

# **Course description**:

After completing this course, students will have a broad and fundamental understanding of different measuring devices. Topics range from an overview of basic measuring instruments and systems with their characteristics, different displacement, vacuum, strain, pressure, angular velocity, acceleration and temperature measurement techniques in details.

# **Course Outcomes**

| CO1 | Explain the characteristics of measurement system.                                   |
|-----|--------------------------------------------------------------------------------------|
| CO2 | Make use of various displacement and strain measuring devices.                       |
| CO3 | Make use of angular speed, acceleration, temperature and pressure measuring devices. |

# **Detailed syllabus:**

| Unit-I   | Significance of Mechanical Measurements, Classification of measuring instruments,            |
|----------|----------------------------------------------------------------------------------------------|
|          | generalized measurement system, types of inputs: Desired, interfering and modifying          |
|          | inputs. Static characteristics: Static calibration, Linearity, Static Sensitivity, Accuracy, |
|          | Static error, Precision, Reproducibility, Threshold, Resolution, Hysteresis, Drift, Span &   |
|          | Range etc.                                                                                   |
|          | Error in measurement: Types of errors, Effect of component errors on combination             |
|          | and distribution of combination errors on components, Probable errors.                       |
| Unit-II  | Displacement measurement: Transducers for displacement measurement,                          |
|          | Potentiometers, LVDT, Capacitance type, Digital transducers (optical encoder), Nozzle        |
|          | flapper transducer.                                                                          |
|          | Strain measurement: Theory of Strain Gauges, Gauge factor, Temperature                       |
|          | compensation, Bridge circuit, Orientation of Strain Gauges for Force and Torque              |
|          | measurement, Strain Gauge based Load Cells and Torque Sensors                                |
| Unit-III | Measurement of angular velocity: Tachometers, Tacho-generators, digital tachometers          |
|          | and stroboscopic methods.                                                                    |
|          | <b>Pressure measurement:</b> Pressure standards, Elastic pressure transducers viz. Bourdon   |
|          | Tubes, Diaphragm, Bellows and piezoelectric pressure sensors. High-pressure                  |
|          | measurements, Bridgman gauges Calibration of pressure sensors.                               |
|          | Vacuum measurement: Vacuum gauges viz. McLeod gauge, Ionization and Thermal                  |
|          | Conductivity gauges.                                                                         |
| Unit-IV  | Acceleration Measurement: Theory of accelerometers and vibro-meters, Practical               |
|          | Accelerometers, strain gauge based and piezoelectric accelerometers.                         |
| Unit-V   | Temperature measurement: Resistance thermometers, Thermistors and                            |
|          | Thermocouples, Pyrometers                                                                    |

## **Text and Reference Books**

- 1. Sawhney A K, "Mechanical Measurements and Instruments", DhanpatRai& Sons. New Delhi.
- 2. Rangan C. S, Sarma G. R.," Instrumentation Devices and Systems", Tata McGraw Hill, Delhi
- 3. Kumar D S," Mechanical Measurements and Control" Metropolitan publication, Delhi
- 4. J. P. Holman, Experimental Methods for Engineers, McGraw Hills Int. Edition.
- 5. E. O. Doebelin, "Engineering Experimentation: planning, Execution, Reporting", McGraw Hills Int. Edition.
- 6. Richard, Figliola," Theory and Design for Mechanical Measurements", 3rd Edition, Wiley Publication.
- 7. E. O. Doebelin, Measurement Systems: Applications and Design", 5th ed., McGraw Hill.

8. Thomas Beckwith, N. Lewis Buck, Roy Marangoni, "Mechanical Engineering Measurement",

Narosa Publishing House, Bombay.

## Mapping of Course outcome with Program Outcomes (Mechanical Engineering)

| Course<br>Outco | PO1 | PO<br>2 | PO3 | PO<br>4 | PO5 | PO6 | PO<br>7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO<br>1 | PSO<br>2 |
|-----------------|-----|---------|-----|---------|-----|-----|---------|-----|-----|------|------|------|----------|----------|
| me              |     |         |     |         |     |     |         |     |     |      |      |      |          |          |
| CO1             | 1   | 2       | 3   |         |     |     |         |     |     |      |      |      | 1        |          |
| CO2             | 2   | 1       | 3   | 2       | 3   |     | 3       |     |     |      |      |      | 2        |          |
| CO3             | 3   | 1       | 2   | 3       |     |     | 3       |     |     |      |      |      | 1        |          |
| CO4             | 2   | 1       | 2   | 1       |     |     |         |     |     |      |      |      | 2        |          |

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3018: INTRODUCTION TO FEM |                     |            |  |
|------------------------------|---------------------|------------|--|
| Teaching Scheme              | Examination Scheme  | 9          |  |
| Lectures: 3 Hrs/Week         | Class Test I        | : 15 Marks |  |
| Credits: 3                   | Class Test II       | : 15 Marks |  |
|                              | Teachers Assessment | : 10 Marks |  |
|                              | End Semester Exam   | : 60 Marks |  |

**Prerequisites:** MA1001Engineering Mathematics,MA1002Engineering Mathematics-III

**Course description**: This course consists of basic understanding of finite element method. Basic finite element formulation techniques are covered in this course. This course is useful to solve solid and structural mechanics problem, heat transfer problem and fluid mechanics problem using FEM.

# **Course Objectives:**

1. Understand how and why finite element techniques work.

2. Learn how the finite element method is implemented.

3. Develop finite element formulations of engineering problems from a variety of application areas including structural mechanics, heat transfer and fluid mechanics.

4. Understand how to use finite element analysis in design.

# **Course Outcome**

After completing the course, students will able to:

| CO1 | Explain the general steps of finite element methods                                              |
|-----|--------------------------------------------------------------------------------------------------|
| CO2 | Explain the various FEM techniques                                                               |
| CO3 | Formulate and develop FEM model for common engineering problems                                  |
| CO4 | Apply FEM methods to solve basic problems in heat transfer, solid mechanics and fluid mechanics. |

# **Detailed Syllabus:**

| Unit1 | <b>Introduction:</b> Basic concept, Historical background, engineering applications, general description, comparison with other methods, Need for weighted – integral forms, relevant mathematical concepts and formulae, displacement transformation matrix, stiffness matrix, weak formulation of boundary value problems, variational methods, Rayleigh –Ritz method and weighted residual approach |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit2 | <b>Finite Element Techniques:</b> Model boundary value problem, finite element discretization,                                                                                                                                                                                                                                                                                                         |
|       | of element equations, connectivity, boundary conditions, principal of potential energy, FEM solution, convergence criteria                                                                                                                                                                                                                                                                             |
| Unit3 | Applications to solid and structural mechanics problems: External and internal                                                                                                                                                                                                                                                                                                                         |
|       | equilibrium equations, one-dimensional stress-strain relations, plane stress and strain                                                                                                                                                                                                                                                                                                                |
|       | problems, strain displacement relations, boundary conditions compatibility equations                                                                                                                                                                                                                                                                                                                   |
| Unit4 | Application to heat transfer problem: Variation approach, Galerkin approach, one-                                                                                                                                                                                                                                                                                                                      |
|       | dimensional steady state problems for conduction, convection and radiation                                                                                                                                                                                                                                                                                                                             |
| Unit5 | Application to fluid mechanics problems: In viscid incompressible flow, potential-function                                                                                                                                                                                                                                                                                                             |
|       | and stream-function formulation, incompressible viscous flow, solution of incompressible                                                                                                                                                                                                                                                                                                               |
|       | fluid film lubrication                                                                                                                                                                                                                                                                                                                                                                                 |

# Text and Reference Books

1. Reddy J.N., "An Introduction to Finite Element Method", (2005), TMH, New Delhi

2. Seshu P., "Finite Element Analysis", (2006), PHI, New Delhi

3. T R Chandrupatla, A D Belegundu, "Finite Elements in Engineering", PHI learning Pvt Ltd.

# Mapping of Course outcome with Program Outcomes

| Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1 | PO1 | PO1 | PSO | PSO |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Outcom |     |     |     |     |     |     |     |     |     | 0   | 1   | 2   | 1   | 2   |
| e      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| CO1    | 3   | 2   | 2   |     |     | 1   |     |     |     |     |     |     | 2   |     |
|        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| CO2    | 3   | 2   | 3   |     | 1   |     |     |     |     |     |     |     | 2   |     |
|        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| CO3    | 3   | 2   | 3   |     |     |     |     |     |     |     |     |     | 2   |     |
|        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| CO4    |     |     | 3   |     |     | 2   | 1   | 1   |     |     |     |     | 2   |     |
|        |     |     |     |     |     |     |     |     |     |     |     |     |     |     |

# 1 – High 2 – Medium 3 - Low

**Teacher's Assessment:** Teachers Assessment of 20 marks is based on one of the / or combination of few of following

- 1) Question & answer
- 2) Numerical solution
- 3) Attendance
- 4) Quiz

## **Assessment Pattern**

| Assessment      | Knowledge Level | Test I | Test II | Teachers    | End Semester |
|-----------------|-----------------|--------|---------|-------------|--------------|
| Pattern         |                 |        |         | Assessment/ | Examination  |
| Level No.       |                 |        |         | Assignment  |              |
| K1              | Remember        | 04     | 04      | 02          | 10           |
| K2              | Understand      | 04     | 04      | 03          | 10           |
| K3              | Apply           | 04     | 04      | 03          | 20           |
| K4              | Analyze         | 03     | 03      | 02          | 20           |
| K5              | Evaluate        | 00     | 00      | 00          | 00           |
| K6              | Create          | 00     | 00      | 00          | 00           |
| Total Marks 100 |                 | 15     | 15      | 10          | 60           |

## Assessment table

| Assessment Tool                | K1  | K2  | K3  | K4  |
|--------------------------------|-----|-----|-----|-----|
|                                | C02 | C01 | C03 | CO4 |
| Class Test I (15 Marks)        | 04  | 04  | 04  | 03  |
| Class Test II (15 Marks)       | 04  | 04  | 04  | 03  |
| Teachers Assessment (10 Marks) | 02  | 03  | 03  | 02  |
| ESE Assessment (60 Marks)      | 10  | 10  | 20  | 20  |

**Special Instructions if any: Nil** 

| ME 3019: Mechanical Vibration |                             |            |  |
|-------------------------------|-----------------------------|------------|--|
| Teaching Scheme               | <b>Examination Scheme</b>   |            |  |
| Lectures: 3Hrs/Week           | Class Test-I                | : 15 Marks |  |
| Total Credits : 03            | Class Test-II               | : 15 Marks |  |
|                               | <b>Teachers Assessment:</b> | 10Marks    |  |
|                               | End Semester Exam           | : 60 Marks |  |

#### **Course description**:

This is a comprehensive course on Mechanical Vibrations And Noise Control to serve the requirements of undergraduate students in Mechanical Engineering. The course deals with the basic concepts of vibrations. Undamped, damped and forced vibrations have been analysed. Whirling of shafts, two-degree, multi-degree and torsional vibrations and approximate methods have been explained. Advanced topics like non-linear vibrations, transient, and random vibrations have been covered in this course. Methods for vibration control, noise control and their measurements have been given.

# **Course Objective:**

To understand the basic concepts and behavior of vibrations in machines,

To understand the determination of frequencies and other parameters in single degree and two degree vibration systems

To understand to determine the critical speeds of rotating shafts

To understand how to apply the different measures for controlling the machine vibrations and noise

# **Course Outcomes:**

After completing the course, students will be able to:

| CO1 | Explain various types of vibration and its effects.                          |
|-----|------------------------------------------------------------------------------|
| CO2 | Measure and analyse free and forced vibration in various mechanical systems. |
| CO3 | Apply the control techniques for mechanical vibrations and noise.            |

#### **Detailed syllabus:**

| Unit-I   | Single Degree of Freedom Systems-Free Vibrations:                                         |
|----------|-------------------------------------------------------------------------------------------|
|          | Introduction to vibration, definitions and basic concepts, degree of freedom, types of    |
|          | vibrations, S.H.M., Fourier analysis. Undamped free vibrations, spring mass system,       |
|          | equivalent stiffness of spring combinations, longitudinal vibrations, transverse          |
|          | vibrations, torsional vibrations; illustrative examples; Damped free vibrations, types of |
|          | damping, free vibrations with viscous damping, logarithmic decrement, dry friction or     |
|          | coulomb damping, illustrative examples.                                                   |
| Unit-II  | Single Degree of Freedom Systems-Forced Vibrations                                        |
|          | Forced vibrations with constant harmonic excitation, magnification factor, vibrations     |
|          | with rotating & reciprocating unbalance, vibrations due to excitation of the support,     |
|          | vibrations with coulomb damping, illustrative examples.                                   |
| Unit-III | Two Degree of Freedom Systems                                                             |

|         | Introduction, principle modes of vibration, spring mass coupled systems, double pendulum, torsional systems; combined rectilinear & angular modes, systems with damping illustrative examples. Critical speed of a light shaft having a single disc |  |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|         | without and with damping, illustrative examples                                                                                                                                                                                                     |  |  |  |  |  |  |
| Unit-IV | Vibration Control                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|         | Vibration isolation and transmissibility, force transmissibility, motion transmissibility,                                                                                                                                                          |  |  |  |  |  |  |
|         | vibration absorbers, measurement of vibration, vibration measuring instruments, real                                                                                                                                                                |  |  |  |  |  |  |
|         | time frequency processing, vibration control, vibration control for noise reduction,                                                                                                                                                                |  |  |  |  |  |  |
|         | vibration dampers and vibration isolators, illustrative examples.                                                                                                                                                                                   |  |  |  |  |  |  |
| Unit-V  | Noise Control                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|         | Sound, human response to sound, the Decibel scale, octave band analysis, noise, effects                                                                                                                                                             |  |  |  |  |  |  |
|         | of noise, standards and limits, sources of noise, noise measuring instruments, noise                                                                                                                                                                |  |  |  |  |  |  |
|         | control, industrial noise control strategies, noise control at source, noise control along                                                                                                                                                          |  |  |  |  |  |  |
|         | path, noise control at receiver, acoustic barriers, illustrative examples.                                                                                                                                                                          |  |  |  |  |  |  |

# **Text and Reference Books**

## **Text Books:**

- 1. G. K. Grover," Mechanical Vibrations", Nemchand Publication, New Delhi
- 2. A.G. Ambekar, "Mechanical Vibrations and Noise Engineering, PHI, New Delhi
- 3. J. D. Irwin & E. R. Graf, Industrial Noise and Vibration Control, PHI, New Delhi

## **Reference Books:**

- 1. Den Hartog, "Mechanical Vibrations", Dover Publication, New York
- 2. Hand Book of Noise and Vibration Control, Trade and Technical Press Ltd., England
- 3. L. L. Faulkhar, "Industrial Noise Control", Industrial Press Inc., New York .

# Mapping of Course outcome with Program Outcomes (Mechanical Engineering)

| Course | PO<br>1 | PO | PO<br>2 | PO | PO5 | PO | PO | PO | PO9 | PO1 | PO1 | PO1 | PSO | PSO |
|--------|---------|----|---------|----|-----|----|----|----|-----|-----|-----|-----|-----|-----|
| e      | 1       | Z  | 3       | 4  |     | 0  | /  | 8  |     | 0   | 1   | 2   | 1   | Z   |
| CO1    |         | 2  |         |    |     | 1  |    |    |     |     |     |     | 1   |     |
| CO2    | 2       |    | 1       |    |     | 1  |    |    |     |     |     |     | 1   |     |
| CO3    |         | 1  | 2       | 3  |     |    |    |    |     |     |     |     | 2   |     |

1 – High 2 – Medium 3 – Low

#### Assessment table:

| Course outcomes                      | CO1 |    |    | CO2 |    |    |    | CO3 |    |    |    |    |
|--------------------------------------|-----|----|----|-----|----|----|----|-----|----|----|----|----|
|                                      |     |    |    |     |    |    |    |     |    |    |    |    |
| Assessment Tool                      | K1  | K2 | K3 | K5  | K1 | K2 | K3 | K5  | K1 | K2 | K3 | K5 |
| Class Test-I<br>(15 Marks)           | 2   | 1  | 6  | 6   | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| Class Test-II<br>(15 Marks)          | 0   | 0  | 0  | 0   | 2  | 1  | 6  | 6   | 0  | 0  | 0  | 0  |
| Teachers<br>Assessment (10<br>Marks) | 1   | 1  | 0  | 2   | 1  | 1  | 0  | 2   | 0  | 0  | 0  | 2  |
| ESE Assessment<br>(60 Marks)         | 4   | 0  | 10 | 10  | 4  | 0  | 10 | 10  | 2  | 0  | 0  | 10 |

# **Teaching Strategies:**

The teaching strategy planned through the lectures, and team based home works. Exercises assigned weekly to stimulate the students to actively use and revise the learned concepts, which also help the students to express their way of solving the problems fluently in written form. Most critical concepts and mistakes emphasized

Teacher's Assessment: Teacher's assessment of 10 marks based on the following.

- 3) Home assignments
- 4) Surprise tests with multiple choice questions

## **Assessment Pattern:**

| Assessment    | Knowledge Level | Test1 | Test2 | Teachers    | End Semester |
|---------------|-----------------|-------|-------|-------------|--------------|
| Pattern Level |                 |       |       | Assessment/ | Examination  |
| No.           |                 |       |       | Assignment  |              |
| K1            | Remember        | 2     | 2     | 2           | 10           |
| K2            | Understand      | 1     | 1     | 2           | 0            |
| K3            | Apply           | 06    | 06    | 00          | 20           |
| K4            | Analyze         | 00    | 00    | 00          | 00           |
| K5            | Evaluate        | 06    | 06    | 06          | 30           |
| K6            | Create          | 00    | 00    | 00          | 00           |
| Total         |                 | 15    | 15    | 10          | 60           |

| ME 3020 : ADVANCED STRESS ANALYSIS |                                       |  |  |  |  |  |
|------------------------------------|---------------------------------------|--|--|--|--|--|
| Teaching Scheme                    | Examination Scheme                    |  |  |  |  |  |
| Lectures: 3Hrs/Week                | Class Test I : 15 Marks               |  |  |  |  |  |
| Credits: 3                         | Class Test II : 15 Marks              |  |  |  |  |  |
|                                    | <b>Teachers Assessment</b> : 10 Marks |  |  |  |  |  |
|                                    | End Semester Exam : 60 Marks          |  |  |  |  |  |

Prerequisites: ME 3002 Design of Machine Elements, ME 2012 Strength of Material

## **Course description**:

Studies of stresses and strains in two-dimensional problems. Failure theories and yield criteria. Stress function approach to two-dimensional problems. Bending of non-homogeneous symmetric beams. Torsion of bars with prismatic bar.

## **Course Objectives:**

- 1. To understand concepts of plain stress, strain, strain energy, two dimensional and octahedral stress conditions and applying it for numerical analysis.
- 2. Enhancing torsion concepts for circular and non-circular cross sections and applying it to various experimental and numerical analysis.
- 3. To understand concepts of shear centre and contact stresses in various geometric conditions and using it for numerical analysis.

# **Course Outcome:**

After completing the course, students will able to:

| CO1 | Explain the concepts of principal stress and principal strains.                  |
|-----|----------------------------------------------------------------------------------|
| CO2 | Solve basic problems in two-dimensional elasticity using Airy's stress function. |
| CO3 | Solve problems based on critical conditions of loading in two dimensional state. |

# **Detailed Syllabus:**

| Unit 1 | Theory of Elasticity:                                                                       |
|--------|---------------------------------------------------------------------------------------------|
|        | Plane stresses and plane strain: plane stress, plane strain, stressand strain at a point,   |
|        | differential equations of equilibrium, boundary conditions, compatibility equations, Airy's |
|        | stress function. Two-dimensional problems in rectangular coordinates: Solutions by          |
|        | polynomials, end effects, Saint Venant's principal.                                         |
|        |                                                                                             |
|        | Applications of Energy Methods:                                                             |
|        | First and second theorems, Castigliano's theorems, applications foe analysis                |
| Unit 2 | oftwo dimensional loaded members to determine deflections and reactions at supports and     |
|        | numerical.                                                                                  |
| Unit 3 | Theory of Torsion:                                                                          |
|        | Torsion of prismatic bars, Thin walledhollow and rectangular cross sections, Saint          |
|        | Venant's theory and numerical.                                                              |
|        |                                                                                             |
| Unit 4 | Experimental Stress Analysis:                                                               |
|        | Stress analysis by-mechanical, optical and electrical strain gauges, strain rosette, whole  |
|        | field methods, Moire fringe method, brittle coatings for strain indication.                 |
|        |                                                                                             |
| Unit 5 | Shear Center and Symmetrical Bending:                                                       |
|        | Shear center for beams of different cross sections, bending and deflections of beams        |
|        | subjected to symmetrical bending.                                                           |
|        |                                                                                             |

# **Text and Reference Books**

1. Timoshenko and Young, "Theory of Elasticity", TMH Publications.

2.Seely and Smith, "Advanced Mechanics of Materials", John Wiley, New York

3.Den Hartog J. P., "Advanced Strength of Materials", McGraw Hill Publications.

4.Nash W., "Strength of Materials", Schaum's outline series, McGraw Hill.

# Mapping of Course outcome with Program Outcomes:

| Course<br>Outcome | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| CO1               | 1   | 2   |     |     |     |     |     |     |     |      |      |      | 1    |      |
| CO2               | 1   | 2   | 3   |     |     |     |     |     |     |      |      |      | 2    |      |
| CO3               |     | 1   | 2   | 3   |     |     |     |     |     |      |      |      | 3    |      |

1 – High 2 – Medium 3 - Low

## **Assessment Pattern:**

| Assessment      | Knowledge  | Class Test -I | Class Test -I | Teachers    | End Semester |
|-----------------|------------|---------------|---------------|-------------|--------------|
| Pattern Level   | Level      |               |               | Assessment/ | Examination  |
| No.             |            |               |               | Assignment  |              |
| K1              | Remember   | 05            | 05            | 05          | 10           |
| K2              | Understand | 07            | 07            | 05          | 10           |
| K4              | Analyze    | 03            | 03            | 05          | 20           |
| K5              | Evaluate   | 00            | 00            | 00          | 00           |
| Total Marks 100 |            | 15            | 15            | 10          | 60           |

Teacher's Assessment: Teachers Assessment of 10 marks is based on one of the / or combination

of few of the following

- 1) Question & answer / Numerical solution
- 2) Presentation of case studies.

## Assessment table:

| Assessment Tool                | K1  | K2  | K3  | K4  |
|--------------------------------|-----|-----|-----|-----|
|                                | CO1 | CO2 | CO3 | CO4 |
| Class Test (15 Marks)          | 05  | 07  | 03  | 00  |
| Class Test (15 Marks)          | 05  | 07  | 03  | 00  |
| Teachers Assessment (10 Marks) | 02  | 03  | 02  | 00  |
| ESE Assessment (60 Marks)      | 12  | 18  | 12  | 18  |

Special Instructions if any: Nil

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3021: DESIGN OF MACHINE ELEMENTS-II |                            |            |  |  |  |
|----------------------------------------|----------------------------|------------|--|--|--|
| Teaching Scheme                        | <b>Examination Scheme</b>  |            |  |  |  |
| Lectures: 3 Hrs/Week                   | Class Test I               | : 15 Marks |  |  |  |
| Credits: 3                             | Class Test II              | : 15Marks  |  |  |  |
|                                        | <b>Teachers Assessment</b> | : 10 Marks |  |  |  |
|                                        | <b>End Semester Exam</b>   | : 60 Marks |  |  |  |

Prerequisites: ME2012: Strength of Materials; ME3002: Design of Machine Elements

**Course description**: This course builds on the foundation laid by courses of Strength of Materials and Design of Machine Elements at the undergraduate level. It takes the design of machine element aspects further and introduces PG student to optimum design of mechanical elements by considering adequate design and other aspects. It also looks into design principles for machine elements such as mechanical springs, cams, flat plates etc.

1. To understand use of different types springs and determine safe design of spring under given conditions by using design data hand book.

2. To understand the standard nomenclature, forces, failures, application, design procedure of Spur and Helical gears (As per AGMA) and to determine standard geometry under given loading condition by using design data hand book and AGMA procedure.

3. To understand the standard nomenclature, forces, failures, application, design procedure of Spur and Helical gears (As per AGMA) and to determine standard geometry under given loading condition by using design data hand book and AGMA procedure..

4 To understand the standard nomenclature, forces, failures, application, design procedure of Spur and Helical gears (As per AGMA) and to determine standard geometry under given loading condition by using design data hand book and AGMA procedure.

# **Course Outcome**

After completing the course, students will able to:

| CO1 | Design of springs and gears.            |
|-----|-----------------------------------------|
| CO2 | Design of brakes, clutches and bearings |
| CO3 | Explain design optimization methods     |

# **Detailed Syllabus:**

| Unit 1 | Springs                                                                                        |
|--------|------------------------------------------------------------------------------------------------|
|        | Functions of springs, types of springs, spring rate, closed coil helical springs, design       |
|        | equations, Wahl's correction factor, deflection of springs, design against static load, design |
|        | against fluctuating load, effect of end turns, surging, optimum design of springs, fatigue     |
|        | loading, helical torsion spring, leaf spring, nipping of leaf spring, design equations         |
|        |                                                                                                |
| Unit 2 | Design of Spur and Helical Gears                                                               |
|        | Spur gear: nomenclature, force analysis, types of failures, beam and wear strength             |
|        | equations, effective load, dynamic effect, Buckingham's equation, AGMA approach,               |

|        | Spott's equation, different approaches used in design.                                                                                        |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|        | Helical Gear: terminology of helical gears, formative number of teeth, force analysis, beam                                                   |
|        | strength, effective load on gear tooth, wear strength, Design of simple and compound gear                                                     |
|        | trains.                                                                                                                                       |
| Unit 3 | Design of Bevel and Worm Gears                                                                                                                |
|        | <b>Bevel gears</b> : terminology, bevel factor, relations of different angles, beam strength, wear strength, effective load, design equations |
|        | Worm gears: geometry, terminology, force analysis, friction in worm gears, design for                                                         |
|        | beam strength, wear consideration, and heat dissipation, empirical relations (only AGMA                                                       |
|        | approach)                                                                                                                                     |
|        |                                                                                                                                               |
| Unit 4 | Design of Clutches and Brakes                                                                                                                 |
|        | Clutches: friction clutches, uniform intensity of pressure and uniform rate of wear in                                                        |
|        | conical and flat pivot, materials and design equations for single, multi-plate cone and                                                       |
|        | centrifugal clutch                                                                                                                            |
|        | Brakes: types, short shoe brakes, frictional torque, long shoe brakes, internal and external                                                  |
|        | shoe brakes, frictional torque and force analysis, simple, differential and additive types of                                                 |
|        | bond brakes, heat dissipation, material for lining                                                                                            |
|        |                                                                                                                                               |
| Unit 5 | Design of sliding and rolling contact bearings and Design optimization                                                                        |
|        | Sliding contact bearings: viscosity, petroff's law, hydrostatic lubrication, hydrostatic step                                                 |
|        | bearing, hydrodynamic theory, Reynolds's equation, Summerfield number, hydrodynamic                                                           |
|        | bearing performance, Raimondi and Boyd's method                                                                                               |
|        | Rolling contact bearings: Types of rolling contact bearings, Hertz contact stresses, static                                                   |
|        | load carrying capacity, striebeck equation, dynamic load carrying capacity, equivalent                                                        |
|        | bearing load, load life relationship, load factor, selection of bearing, roller bearings,                                                     |
|        | lubrication and mounting of bearings. Design optimization, Different Methods of                                                               |
|        | Optimization. Johnson's Method for size, shape, weight for simple parts. of Optimization.                                                     |
|        | Johnson's Method for size, shape, weight for simple parts.                                                                                    |
|        |                                                                                                                                               |

# **Text and Reference Books**

 Shigley J. E. and Mischkey C. R., "Mechanical Engineering Design", TMH, New Delhi
Spotts M. F. and Shoup T. E., "Design of Machine Elements", Prentice Hall International
Hall A. S., Holowenko A. R. and Laughlin H. G., "Theory and Problems of Machine Design", Schaum's outline series, Tata McGraw Hill Publication. Co. Ltd, New Delhi
Bhandari V. B., "Design of Machine Elements", Tata McGraw Hill Publication. Co. Ltd, New Delhi Reference Books
Black P. H. and O. E. Adam, "Machine Design", Tata McGraw Hill Publication. Co. Ltd, New Delhi 2. Burghardt M. D., "Introduction to engineering design and Problem Solving", McGraw Hill Publications

3. K. Lingaiah, "Machine Design Data book", Tata McGraw Hill Publication. Co. Ltd, New Delhi

4. Alfred Hall, Alfred Holowenko, Herman Laughlin, Somani, "MACHINE DESIGN", Tata

McGraw Hill Publication. Co. Ltd, New Delhi

# Mapping of Course outcome with Program Outcomes

| Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1 | PO1 | PO1 | PSO | PSO |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Outco  |     |     |     |     |     |     |     |     |     | 0   | 1   | 2   | 1   | 2   |
| me     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| CO1    | 3   | 1   | 2   |     |     |     | 1   |     | 2   | 1   |     |     | 1   |     |
| CO2    | 1   | 1   | 2   |     |     |     |     |     |     |     |     |     | 1   |     |
| CO3    | 2   | 3   | 1   |     |     |     |     |     |     |     |     |     | 2   |     |
| CO4    |     | 2   | 3   |     |     |     | 1   | 2   | 2   | 1   |     |     |     |     |

# 1 – High 2 – Medium 3 – Low

**Teacher's Assessment:** Teachers Assessment of 20 marks is based on one of the / or combination of few of following

- 1) Question & answer / Numerical solution
- 2) Presentation of case studies of Application of experimental stress analysis
- 3) Test consisting of multiple choice questions

# **Assessment Pattern**

| Assessmen         | Knowledge Level | Test I | Test II | Teachers   | End Semester |
|-------------------|-----------------|--------|---------|------------|--------------|
| t Pattern         |                 |        |         | Assessment | Examination  |
| Level No.         |                 |        |         | 1          |              |
|                   |                 |        |         | Assignment |              |
| K1                | Remember        | 02     | 02      | 01         | 20           |
| K2                | Understand      | 02     | 03      | 02         | 20           |
| K3                | Apply           | 03     | 04      | 02         | 10           |
| K4                | Analyze         | 03     | 04      | 05         | 10           |
| K5                | Evaluate        | 05     | 02      | 00         | 00           |
| K6                | Create          | 00     | 00      | 00         | 00           |
| <b>Total Mark</b> | s 100           | 15     | 15      | 10         | 60           |

# Assessment table

| Assessment Tool                | K1  | K2  | K3  | K4  |
|--------------------------------|-----|-----|-----|-----|
|                                | CO1 | CO2 | CO3 | CO4 |
| Class Test (15 Marks)          | 03  | 03  | 05  | 04  |
| Class Test (15 Marks)          | 05  | 04  | 03  | 03  |
| Teachers Assessment (10 Marks) | 02  | 02  | 03  | 03  |
| ESE Assessment (60 Marks)      | 15  | 15  | 15  | 15  |

Special Instructions if any: Nil

5 2

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3022: MACHINE TOOL ERECTION |                                 |  |  |  |  |  |  |
|--------------------------------|---------------------------------|--|--|--|--|--|--|
| Teaching Scheme                | Examination Scheme              |  |  |  |  |  |  |
| Lectures: 3Hrs./Week           | Class Test 1 :15 Marks          |  |  |  |  |  |  |
| Tutorial: Hr./Week             | Class Test 2 :15 Marks          |  |  |  |  |  |  |
| Credits: 3                     | Teacher's Assessment : 10 Marks |  |  |  |  |  |  |
|                                | End Semester Exam : 60 Marks    |  |  |  |  |  |  |

## Pre-requisites: ME 2002-Machine Drawing, ME 2010-Mechanism of Machines

**Course Description:** This course is meant for the candidates who aspire to become professional machine tool maintenance engineer or maintenance consultant.

#### **Course Objectives**

- 1. To understand the basics of foundation of machines
- 2. To understand the principles of levelling and alignment
- 3. To understand the application of cutting fluids and coolants and lubrications
- 4. To understand the common maintenance of mechanical system and components

## **Course outcomes:** At the end of the course, the student will be able to:

| CO1 | Explain the different types of foundation systems                                                  |
|-----|----------------------------------------------------------------------------------------------------|
| CO2 | Apply the principles of leveling and alignment                                                     |
| CO3 | Analyze the properties of cutting fluids and coolants                                              |
| CO4 | Explain and apply the knowledge of lubrication                                                     |
| CO5 | Explain the principles of braking system, transmission system and bearing mounting and dismounting |

#### **Detailed Syllabus:**

| Unit | MACHINE FOUNDATION                                                                  |
|------|-------------------------------------------------------------------------------------|
| 1    | Purpose & methods employed for installation & erection of precision & heavy duty    |
|      | machines.Location & excavation for foundation. Different types of foundations -     |
|      | foundation bolts, structural, reinforced, wooden, isolated foundations. Maintenance |
|      | and Repairs of Various types of drilling machines.                                  |
| Unit | Leveling                                                                            |
| 2    | Definition and importance of leveling. Types of levels- Spirit level, Water level,  |
|      | Dumpy level, Method of leveling. Preparation of packing and shim.                   |
|      | Alignment:                                                                          |
|      | Definition and importance of alignment, Types of misalignment, Planes of            |
|      | misalignment, Shaft vs.coupling alignment, Actions to be taken before alignment,    |
|      | Concept of axial float, Concept of Indicator sag, Dial Test Indicator, Methods of   |
|      | alignment - Rim and Face readings on Stationary Machine, Rim and Face reading on    |

|      | machine to be seamed.Geometrical Alignment of Machine.                                |
|------|---------------------------------------------------------------------------------------|
| Unit | Cutting Fluids and Coolants: Essential parts of a basic cooling system used in the    |
| 3    | cutting of metals. Various types of coolants, its properties and uses, cooling system |
|      | type-soluble oils- soaps, Suds paraffin, soda water etc. Effect of cutting fluids in  |
|      | metal cutting. Difference between coolant and lubricants.                             |
| Unit | Lubrication: Lubrication and Its Importance, lubricating systems Concept of           |
| 4    | lubrication Types and properties of Oil and Grease. Methods of oil lubrication- Once  |
|      | through and centralized lubrication system. Methods of grease lubrication system-     |
|      | grease guns, centralized lubrication system. Warning & protective devices used in     |
|      | centralized lubrication system (Pressure switch, temperature gauge, level indicator   |
|      | and relief valve.)                                                                    |
| Unit | Mechanical Components and systems:                                                    |
| 5    | Brakes & Braking Systems: Types & Functions. Inspection of brakes for safe&           |
|      | effective working.                                                                    |
|      | Transmission System: Belt: Problems related to belts(Creep and slip)Belt              |
|      | maintenance. Gears: operation and maintenance of gear systems                         |
|      | Bearing Mounting and Dismounting: Mounting of bearings, measurement and               |
|      | adjustment of clearances in bearings and storage of bearings.Related hazards, risk    |
|      | and precautions                                                                       |
|      |                                                                                       |

# **Text Books**

1. John Piotrowski, "Shaft alignment handbook", CRC Press.

2. M. K. Ghosh, B. C. Majumdar, MihirSarangi, "Theory of Lubrication" McGraw Hill Publication.

3. Robert OParmley, "Mechanical Components Handbook", McGraw Hill Publication.

4. Neil Sclater, Nicholas P. Chironis, "Mechanisms and Mechanical Devices Sourcebook", McGraw Hill Publications.

5. Dr. Kirpal Singh, "Automobile Engineering Volume 1 & 2", McGraw Hill Publications. **Reference Books** 

1. Terrell Croft, "Machinery Foundations and Erection", McGraw Hill Publications.

#### Mapping of Course outcome with Program Outcomes

|        | 0 - |    |    |    |    |    |    |    |    |     |     |     |     |     |
|--------|-----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|
| Course | PO  | PO | PO | PO | РО | PO | PO | PO | PO | PO1 | PO1 | PO1 | PSO | PSO |
| Outcom | 1   | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0   | 1   | 2   | 1   | 2   |
| e      |     |    |    |    |    |    |    |    |    |     |     |     |     |     |
| CO1    | 1   | 2  |    |    |    | 3  |    |    |    |     |     |     | 1   |     |
| CO2    | 1   | 2  |    |    |    | 3  |    |    |    |     |     |     | 1   |     |
| CO3    | 2   | 1  | 1  |    |    | 3  |    |    |    |     |     |     | 2   |     |
| CO4    | 3   | 3  | 2  |    |    |    |    |    |    |     |     |     |     |     |
| CO5    | 3   | 3  | 3  |    |    | 3  |    |    |    |     |     |     |     |     |

1 – High 2 – Medium 3 – Low

**Teacher's Assessment:** Teachers Assessment of 20 marks is based on one of the / or combination of few of the following

- 1) Question & answer / Numerical solution
- 2) Presentation of case studies
- 3) Quiz

#### **Assessment Pattern**

| Assessment<br>Pattern<br>Level No. | Knowledge Level | Test 1 | Test 2 | Teachers<br>Assessment/<br>Assignment | End<br>Semester<br>Examinatio<br>n |
|------------------------------------|-----------------|--------|--------|---------------------------------------|------------------------------------|
| K1                                 | Remember        | 05     | 00     | 00                                    | 10                                 |
| K2                                 | Understand      | 05     | 00     | 05                                    | 10                                 |
| K3                                 | Apply           | 05     | 00     | 05                                    | 20                                 |
| K4                                 | Analyze         | 00     | 05     | 00                                    | 20                                 |
| K5                                 | Evaluate        | 00     | 05     | 00                                    | 00                                 |
| K6                                 | Create          | 00     | 05     | 00                                    | 00                                 |
| <b>Total Marks 1</b>               | .00             | 15     | 15     | 10                                    | 60                                 |

#### Assessment table

| Assessment Tool                | K1  | K2  | K3  | K4  | K3  |
|--------------------------------|-----|-----|-----|-----|-----|
|                                | CO1 | CO2 | CO3 | CO4 | CO5 |
| Class Test (15 Marks)          | 05  | 05  | 05  | 00  | 00  |
| Class Test (15 Marks)          | 00  | 00  | 05  | 05  | 05  |
| Teachers Assessment (10 Marks) | 03  | 01  | 01  | 03  | 02  |
| ESE Assessment (60 Marks)      | 10  | 10  | 10  | 20  | 10  |

**Special Instructions if any: Nil.** 

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3023 : LAB-HEAT AND MASS TRANSFER |                           |            |  |  |  |  |
|--------------------------------------|---------------------------|------------|--|--|--|--|
| Teaching Scheme                      | <b>Examination Scheme</b> |            |  |  |  |  |
| Practical: 2 Hrs/Week                | Term Work                 | :25 Marks  |  |  |  |  |
| Credits: 1                           | Practical Examination     |            |  |  |  |  |
|                                      | & Viva Voce:              | : 25 Marks |  |  |  |  |

# **Course Outcome**

As an outcome of completing the Laboratory course, students will able to:

| CO1 | understand the basic laws of heat transfer, the fundamentals of convective heat transfer |  |  |  |  |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|     | process.                                                                                 |  |  |  |  |  |  |  |  |  |  |
| CO2 | analyze problems involving steady state heat conduction in simple geometries,            |  |  |  |  |  |  |  |  |  |  |
|     | performance of pin fin under different tip conditions, Steffen Boltzmann constant,       |  |  |  |  |  |  |  |  |  |  |
|     | emissivity of test surface, critical heat flux.                                          |  |  |  |  |  |  |  |  |  |  |
| CO3 | develop solutions for transient heat conduction in simple geometries, heat exchanger     |  |  |  |  |  |  |  |  |  |  |
|     | performance by using the method of log mean temperature difference.                      |  |  |  |  |  |  |  |  |  |  |
| CO4 | calculate radiation heat transfer between black body surfaces, radiation heat exchange   |  |  |  |  |  |  |  |  |  |  |
|     | between gray body surfaces.                                                              |  |  |  |  |  |  |  |  |  |  |

# Minimum Eight experiments shall be performed to cover entire curriculum of course ME3023. List of Experiments

| Sr. No. | Details                                                                           |
|---------|-----------------------------------------------------------------------------------|
| 1       | Determination of thermal conductivity of Metal rod                                |
| 2       | Determination of thermal conductivity of Insulating powder                        |
| 3       | Determination of thermal conductivity of composite wall                           |
| 4       | Determination of heat transfer coefficient in Natural convection                  |
| 5       | Determination of heat transfer coefficient in forced convection                   |
| 6       | Determination of fin efficiency in Natural and Forced convection                  |
| 7       | Determination of Emissivity of a test surface                                     |
| 8       | Determination of Stefan Boltzmann constant                                        |
| 9       | Determination of critical heat flux of given Nichrome wire                        |
| 10      | Determination of LMTD and Effectiveness of heat exchanger in parallel and counter |
|         | flow arrangement                                                                  |
| 11      | Determination of heat transfer from a heat pipe                                   |
| 12      | Calibration of thermocouple                                                       |

#### Term work

The term work will consist of submitting a file for all the experiments with neatly written records of the study and diagrams.

The term work will be assessed by the course coordinator

#### **Practical Examination**

The Practical Examination will comprise of performing the experiment and viva voce on the syllabus

The practical will be assessed by two examiners, one will be the course coordinator and other will be examiner appointed by BOS

#### Mapping of Course outcome with Program Outcomes

| Course  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcome |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO1     | 1   |     | 3   |     |     |     |     |     |     |      |      |      | 1    |      |
| CO2     |     | 2   |     |     |     | 3   |     |     |     |      |      |      | 1    |      |
| CO3     | 1   |     |     | 2   |     | 3   |     |     |     |      |      |      | 2    |      |
| CO4     |     |     | 3   |     |     |     |     |     |     |      |      |      |      |      |
|         |     |     |     |     |     |     |     |     |     |      |      |      |      |      |

 $1 - High \qquad 2 - Medium \qquad 3 - Low$ 

Head of The Department Mechanical Engineering Govt. Engg. College A'bad
| ME 3024: Lab-METROLOGY AND QUALITY CONTROL |                           |                     |  |  |  |  |  |  |
|--------------------------------------------|---------------------------|---------------------|--|--|--|--|--|--|
| Teaching Scheme                            | <b>Examination Scheme</b> |                     |  |  |  |  |  |  |
| Practical: 2 Hrs/Week                      | Term Work                 | : 25 Marks          |  |  |  |  |  |  |
| Credit: 1                                  | Practical Examination &   | Viva Voce :25 Marks |  |  |  |  |  |  |

# **Course Objectives**

Students will be able to:

1. Define accuracy, precision, calibration, sensitivity, repeatability and such relevant terms in metrology

2. Select appropriate instrument/s for specific measurement.

3. Analyze and interpret the data obtained from the different measurements processes and present

it in the graphical form, statistical form.

4. Construct and draw the control charts.

5. Understand ISO certification procedure and quality system.

#### **Course Outcome**

As an outcome of completing the Laboratory course, students will able to:

| 110 411 0 |                                                         |
|-----------|---------------------------------------------------------|
| CO1       | Proper alignment of the instrument with work piece      |
| CO2       | Handle measuring instruments                            |
| CO3       | Care and maintenance of instruments                     |
| CO4       | Measure the angle, surface finish using the instruments |
| CO5       | Calibration and traceability of the instruments         |
| CO6       | Graphical representation of data                        |
| T int of  |                                                         |

List of Experiments

| Sr. No. | Details                                                                            |
|---------|------------------------------------------------------------------------------------|
| 1       | Demonstration and experimentation on measuring instruments for linear measurements |
| 2       | Demonstration and experimentation on sine bar, sine Centre                         |
| 3       | Demonstration and experimentation on different types of comparators                |
| 4       | Demonstration and experimentation on auto-collimator/angle dekkor                  |
| 5       | Demonstration and experimentation on surface finish measuring instruments          |
| 6       | Demonstration and experimentation on screw thread measuring instruments            |
| 7       | Inspection of production job by statistical process control                        |
| 8       | Study control charts for statistical quality control                               |

| Course | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO1 | PO1 | PO1 | PSO | PSO |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Outcom |     |     |     |     |     |     |     |     |     | 0   | 1   | 2   | 1   | 2   |
| e      |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
| CO1    | 1   |     |     |     |     |     |     |     |     |     |     |     | 1   |     |
| CO2    | 2   | 3   |     |     |     |     |     |     |     |     |     |     | 3   |     |
| CO3    | 3   |     |     |     |     |     |     |     |     |     |     |     | 1   |     |
| CO4    | 1   | 3   |     |     | 3   | 1   |     |     |     |     |     |     | 2   |     |
| CO5    | 1   |     | 2   |     |     | 2   |     |     |     |     |     |     | 1   |     |
| CO6    | 3   | 3   |     |     | 3   | 2   |     |     |     |     |     |     |     |     |

# Mapping of Course outcome with Program Outcomes

# 1 – High 2 – Medium 3 – Low

# Assessment Pattern

| Assessment        | Skill Level    | Term | Practical Examination & |
|-------------------|----------------|------|-------------------------|
| Pattern Level No. |                | Work | viva voce               |
| S1                | Imitation      | 05   | 05                      |
| S2                | Manipulation   | 10   | 10                      |
| S3                | Precision      | 10   | 10                      |
| S4                | Articulation   | 00   | 00                      |
| 55                | Naturalization | 00   | 00                      |
| Total             | •              | 25   | 25                      |

| Preparation (S1)                         | 05 | 05 |
|------------------------------------------|----|----|
| Conduct of Experiment (S2)               | 05 | 05 |
| Observation and Analysis of Results (S3) | 05 | 05 |
| Record (S2)                              | 05 | 05 |
| Presentation/ Viva-Voce (S3)             | 05 | 05 |
| Total                                    | 25 | 25 |

# Assessment Table

| Assessment Tool                              | <b>S</b> 1 | S2  | S2  | <b>S</b> 3 | S2  | S3  |
|----------------------------------------------|------------|-----|-----|------------|-----|-----|
|                                              | C01        | C02 | C03 | CO4        | C05 | C06 |
| Term Work (25 Marks)                         | 05         | 03  | 03  | 05         | 04  | 05  |
| Practical Examination & Viva Voce (25 Marks) | 05         | 03  | 03  | 05         | 04  | 05  |

# ME 3025: LAB- MECHANICAL MEASUREMENT

| Teaching Scheme         | Examination Scheme    |            |  |  |  |  |  |
|-------------------------|-----------------------|------------|--|--|--|--|--|
| Practicals : 2 Hrs/Week | Term Work             | : 25 Marks |  |  |  |  |  |
| Credits : 1             | Practical examination | : 25 Marks |  |  |  |  |  |
|                         |                       |            |  |  |  |  |  |

# **Course Objective**

To understand and apply knowledge of transducers and measuring equipments for practical/real situations

## **Course Outcome**

As an outcome of completing the Laboratory course, students will able to:

| CO1 | Apply knowledge of principles of various sensors and transducers for measuring system.                                                                                                                                                                                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Apply knowledge of displacement, strain measuring instrument for practical /real life situation and setting the instruments for zero error adjustment, Calculation of least count of instrument                                                                       |
| CO3 | Apply knowledge of Angular velocity, pressure, vaccum measuring instrument for practical /real life situation and analyse its characteristics, setting the instruments for zero error adjustment, Calculation of least count of instrument (for group of 15 students) |
| CO4 | Apply knowledge of Temperature, acceleration measuring instrument for practical /real life situation (for group of 15 students)                                                                                                                                       |

## **Term Work**

Students shall perform the following practical(Any Five)

| Sr.No | Details                                                                                                                                                    |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                            |
| 1     | Study and demonstration of generalized measurement system with a typical instrument                                                                        |
| 2     | Measurement of force using any one force measuring instrument, setting the instruments for zero error adjustment, Calculation of least count of instrument |
| 3     | Measurement of strain using strain gauge and calculation of gauge factor (for group of 15 students)                                                        |
| 4     | Measurement of pressure using any one pressure measuring instrument and setting the instruments for zero error adjustment                                  |
| 5     | Measurement of temperature using RTD/Thermocouple/pyrometer and analyzing its characteristics.                                                             |
| 6     | Measurement of speed using any one speed measuring instrument and analyzing of its constant                                                                |
| 7     | Measurement of torque using any one torque measuring instrument analyzing of its constant                                                                  |
| 8     | Measurement of displacement using LVDT and analyzing its characteristics.                                                                                  |

| Mapping of Course outcome with Program Outcomes |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
|-------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Course                                          | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
| Outcome                                         |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO1                                             | 1   | 2   | 3   |     |     |     |     |     |     |      |      |      | 1    |      |
| CO2                                             | 1   | 2   | 3   |     |     |     |     |     |     |      |      |      | 2    |      |
| CO3                                             | 1   | 2   | 3   |     |     | 3   |     |     | 3   |      |      |      | 1    |      |
| CO4                                             | 1   | 2   | 3   |     |     | 3   |     |     | 3   |      |      |      | 3    |      |

# Assessment Table

| Assessment Tool                              | <b>S</b> 1 | S2  | <b>S</b> 3 | <b>S</b> 3 |
|----------------------------------------------|------------|-----|------------|------------|
|                                              | C01        | C02 | C03        | CO4        |
| Term Work (25 Marks)                         | 05         | 05  | 10         | 05         |
| Practical Examination & Viva Voce (25 Marks) | 05         | 05  | 10         | 05         |
|                                              |            |     |            |            |

# **Assessment Pattern**

| Assessment       | Skill Level    | Term  | Practical Examination & vivavoce |
|------------------|----------------|-------|----------------------------------|
| Pattern LevelNo. |                | Wor k |                                  |
| S1               | Imitation      | 05    | 05                               |
| S2               | Manipulation   | 05    | 05                               |
| S3               | Precision      | 05    | 05                               |
| S4               | Articulation   | 05    | 05                               |
| 55               | Naturalization | 05    | 05                               |
| Total            |                | 25    | 25                               |

| Preparation (S1)                         | 05 | 05 |
|------------------------------------------|----|----|
| Conduct of Experiment (S2)               | 05 | 05 |
| Observation and Analysis of Results (S3) | 05 | 05 |
| Record (S2)                              | 05 | 05 |
| Presentation/ Viva-Voce (S3)             | 05 | 05 |
| Total                                    | 25 | 25 |

( 4

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| ME 3026: LAB- INDUSTRIAL INTERACTION |                                                 |  |  |  |  |  |
|--------------------------------------|-------------------------------------------------|--|--|--|--|--|
| Teaching Scheme                      | Examination Scheme                              |  |  |  |  |  |
| Practical: 2 hrs/week<br>Credit 1    | Term work: 25 marks<br>Practical/Oral: 25 marks |  |  |  |  |  |

## **Course Objectives**

- 1. To cultivate symbiotic relationship between college and industry as well as college and other research institutes.
- 2. To provide ample opportunities for industry exposure to students through industrial visits, summer internship and industry projects.
- 3. Interact with the engineers in industry and get acquainted with the latest technologies and use theoretical knowledge for solving 'real life' problems encountered in industry

## **Course Outcomes**

Student will able to

| CO1 | Aware about the job functions in the industry technique    |
|-----|------------------------------------------------------------|
| CO2 | Develop attitudes to adapt to industrial environment       |
| CO3 | Enhance proper practical and relevant knowledge and skills |
| CO4 | Develop capabilities to become self-employed               |

#### MappingofCourseoutcomewithprogrammeoutcome

| Course     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | <b>PO7</b> | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|------------|-----|-----|-----|-----|-----|-----|------------|-----|-----|------|------|------|------|------|
| C01        | 1   |     |     |     | 2   | 2   | 1          |     |     |      |      |      | 1    |      |
| CO2        |     |     |     |     |     | 3   | 1          |     |     |      |      |      | 2    |      |
| CO3        |     |     | 1   |     |     | 2   | 1          | 1   |     |      |      |      | 2    |      |
| <b>CO4</b> |     |     |     |     |     | 2   | 1          |     | 1   | 1    |      |      | 2    |      |

## 1 – High 2 – Medium 3 - Low

## **Term Work**

Student has undergo industrial training of minimum three weeks and submit a report of industrial training of at least 30 pages containing Organization goal, history, structure, layout, departmental details, PPC, material management, R&D etc The students will be engage in Industry in consultation with his guide. The guide will monitor the training with weekly review. Guide will instruct and advise the student from time to time. The student has to engage in Training immediately after the end semester exam of semester 4.

## **Practical Examination**

The Practical Examination will comprise of performing the experiment and viva voce on the syllabus the practical will be assessed by two examiners, one will be the course coordinator and other will be examiner appointed by BOS

#### AssessmentTable

| Assessment Tool                            | <b>S</b> 1 | S2  | <b>S</b> 3 | <b>S</b> 3 |
|--------------------------------------------|------------|-----|------------|------------|
|                                            | C01        | C02 | C03        | CO4        |
| Term Work(25Marks)                         | 06         | 04  | 10         | 05         |
| Practical Examination & Viva Voce(25Marks) | 06         | 04  | 10         | 05         |

## **Assessment Pattern**

| Assessment       | Skill Level    | Term  | Practical Examination & vivavoce |
|------------------|----------------|-------|----------------------------------|
| Pattern LevelNo. |                | Wor k |                                  |
| <b>S</b> 1       | Imitation      | 06    | 09                               |
| S2               | Manipulation   | 04    | 06                               |
| S3               | Precision      | 05    | 05                               |
| S4               | Articulation   | 10    | 05                               |
| 55               | Naturalization | 00    | 05                               |
| Total            |                | 25    | 25                               |

# ME 3027: QUALITY MANAGEMENT SYSTEMS

| Teaching Scheme     | Examination Scheme              |
|---------------------|---------------------------------|
| Lectures: 3hrs/week | Class Test 1 – 15 Marks         |
| Credits :3          | Class Test 2 -15 Marks          |
|                     | Teacher's Assessment – 10 Marks |
|                     | End Sem Exam- 60 Marks          |

## **Objectives:**

To,

- 1. Understand the laws, principles and phenomena in the field of quality management
- 2. Be able to apply quality philosophies and tools.
- 3. Create and evaluate process management systems
- 4. To understand and analyse the customer supplier dynamics
- 5. To understand the contemporary trends in logistics

#### **Outcomes:**

- 1. Explain the principles and various philosophies of quality management.
- 2. Apply Just in time technique.
- 3. Apply various techniques of SQC and TQM.
- 4. Explain quality standards and supply chain management.

## **Detailed Syllabus:**

#### Unit 1

Quality Management: Introduction to Quality management, principal of Quality management, Philosophies of various Quality Gurus, Quality planning, leadership theories, Theories of motivation (Maslow and Herzberg), Fred W. Riggs model of comparative management

#### Unit 2

Element of Just In Time manufacturing, Advantages, limitations, plant arrangement for flexible plan, planning, control, kanban, just in time logistics, Implementation issues in JIT manufacturing, Inventory management for JIT, Decision making in JIT, leadership theories.

Theories of motivation

## Unit 3

Quality circle, Human dimension in TQM, Quality Management Tools like Brainstorming, Histogram, check sheet, pareto diagram, Ishiwaka Diagram, control chart, scatter diagram, Affinity diagram, Tree diagram, Five S theory. Quality certification, ISO 9000, TPM-Definition and distinctive feature of TPM, Four developmental Stages of TPM Relationship between TPM, Terotechnology and logistics, Maximization equipment effectiveness organization for TPM implementation, communication and control

## Unit 4

Customers and suppliers -- Define internal and external customers, identify their expectations, and determine their satisfaction levels; define internal and external suppliers and key elements of relations with them, Customer satisfaction and loyalty, Basic customer service principles, Multiple and diverse customer management

#### Unit 5

Quality principles for products and processes -- Identify basic quality principles related to products (such as features, fitness-for-use, freedom from defects, etc.) and processes (such as monitoring, measuring, continuous improvement, etc.). • Quality standards, requirements, and specifications Supply Chain Management ,Supplier Selection ,• Supplier communications, Supplier Performance , Supplier Improvement, Supplier Certification, Partnerships, and Alliances , Supplier Logistics

**Reference Books** 

1. D. C. Montgomery, Introduction to Statistical Quality Control, John Wiley & Sons,

2. Mitra A., Fundamentals of Quality Control and Improvement, PHI

3. J Evans and W Linsay, The Management and Control of Quality, Thomson.

4. Besterfield, D H et al., Total Quality Management, Pearson Education.

5. D. C.Montgomery, Design and Analysis of Experiments, John Wiley & Sons

6. D. C. Montgomery and G C Runger, Applied Statistics and Probability for Engineers, John Wiley & Sons

Teacher's Assessment:

Teachers Assessment of 10 marks is based on one of the / or combination of few of following

Student's Presentation on related topics

Mapping of Course out come with programme outcome

| Course | PO | PO1 | PO1 | PO1 | PSO | PSO |
|--------|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|
| Outco  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0   | 1   | 2   | 1   | 2   |
| me     |    |    |    |    |    |    |    |    |    |     |     |     |     |     |
| CO1    |    |    |    | 3  |    |    |    |    |    |     |     |     | 1   |     |
| CO2    | 3  |    |    |    | 2  |    | 2  |    | 2  |     |     |     | 2   |     |
| CO3    |    | 2  |    |    |    | 3  |    |    |    |     |     |     | 1   |     |
| CO4    |    |    |    |    | 3  |    |    |    |    |     |     |     | 3   |     |
| C05    |    | 3  |    |    |    |    |    |    |    |     |     |     |     |     |

Assessment Pattern

| Assessment    | Knowledge  | Test 1 | Test 2 | Teachers    | End Semester |
|---------------|------------|--------|--------|-------------|--------------|
| Pattern Level | Level      |        |        | Assessment/ | Examination  |
| No.           |            |        |        | Assignment  |              |
| K1            | Remember   | 05     | 05     | 05          | 10           |
| K2            | Understand | 03     | 03     | 02          | 10           |
| K3            | Apply      | 02     | 02     | 05          | 20           |
| K4            | Analyze    | 02     | 02     | 03          | 20           |
| K5            | Evaluate   | 03     | 03     | 00          | 00           |
| K6            | Create     | 00     | 00     | 00          | 00           |
| Total Marks   |            | 15     | 15     | 10          | 60           |
| 100           |            |        |        |             |              |

Assessment table

| Assessment Tool | K1  | K2      | K3  | K4      | K5  |
|-----------------|-----|---------|-----|---------|-----|
| COs             | CO1 | CO1/CO5 | CO3 | CO4/CO2 | CO5 |
| Class Test      | 05  | 07      | 05  | 08      | 05  |
| (30 Marks)      |     |         |     |         |     |
| Teachers        | 02  | 01      | 03  | 02      | 02  |
| Assessment      |     |         |     |         |     |
| (10 Marks)      |     |         |     |         |     |
| ESE Assessment  | 12  | 05      | 10  | 15      | 18  |
| (60 Marks)      |     |         |     |         |     |

| HS 3005: Production Management |                                 |  |  |  |  |
|--------------------------------|---------------------------------|--|--|--|--|
| Teaching Scheme                | Examination Scheme              |  |  |  |  |
| Lectures:                      | Class Test 1 – 10marks          |  |  |  |  |
| 2hrs/week                      | Class Test 2 – 10 marks         |  |  |  |  |
| Credits: 2                     | Teacher's Assessment – 05 marks |  |  |  |  |
|                                | End Sem Exam – 25marks          |  |  |  |  |

## **Course Objectives**

- 1. Students are able to understand the concepts of system and personnel productivity.
- 2. Students are able to understand various tools of operation management
- 3. Understand the various strategies and their characteristics.
- 4. Able to understand the concept of supply chain management
- 5. Able to understand concepts of forecasting and planning.

## **Course Outcomes**

- 1. Explain principles of production and operation management.
- 2. Analyze the operations effectiveness.
- 3. Apply various management strategies.
- 4. Define and explain the various supply chain management
- 5. Apply various forecasting techniques.

# **Detailed Syllabus**

**Unit 1**- Production Management: Integrated Production Management, System Productivity, Capital Productivity, Labour Productivity, Personnel Productivity, Training

**Unit 2-** Operations Management: Introduction, Operations Management and Strategy, Tools for Implementation of Operations, Industry Best Practices

**Unit 3-** Operations Strategy: Operations Strategy, Competitive Capabilities and Core Competencies, Operations Strategy as a Competitive Weapon, Linkage Between Corporate, Business, and Operations Strategy, Developing Operations Strategy, Elements or Components of Operations Strategy, Competitive Priorities, Manufacturing Strategies, Service Strategies, Global Strategies and Role of Operations Strategy, Case-lets

**Unit 4**-Supply Chain Management : Introduction, Domain Applications, SCM– The Breakthrough Article, Supply Chain Management, Views on Supply Chain, Bullwhip Effect in SCM, Collaborative Supply Chain, Inventory Management in Supply Chain, Financial Supply Chain – A New Revolution within the SCM Fold

**Unit 5-** Forecasting: Introduction, The Strategic Importance of Forecasting, Benefits, Cost implications and Decision making using forecasting, Classification of Forecasting Process, Methods of Forecasting, Forecasting and Product Life Cycle, Selection of the Forecasting Method, Qualitative Methods of Forecasting, Quantitative Methods, Associative Models of Forecasting, Accuracy of Forecasting

## **Text Books:**

- (1) Production and operation managements, S.N.Chary, Tata McGrawhill
- (2) Principles of Managments, Charles WL Hill, Tata McGrawhill
- (3) Quantitative Techniques, P.C.Tulsian, Pearson
- (4) The Management of Business Logistics. By John Coyle, Edward Bardi and John Langley published by Thomson, 2003.

#### **Reference Books:**

- (1) Operations Management, Jay Heizer, Pearson
- (2) Introduction to management science, Bernard W.Taylor, Pearson
- (3) Supply chain design and management: Strategic and tactical perspectives. By Manish Govil and Jean-Marie Proth. edition published by Academic Press, 2002

## **Teacher's Assessment:**

Teachers Assessment of 10 marks is based on one of the / or combination of few of following

- 1) Student's Presentation on related topics
- 2) Industrial Interaction
- 3) Case study

## Mapping of Course out come with programme outcome

| Course | PO | PO1 | PO1 | PO1 | PSO | PSO |
|--------|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|
| Outco  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 0   | 1   | 2   | 1   | 2   |
| me     |    |    |    |    |    |    |    |    |    |     |     |     |     |     |
| CO1    |    |    | 3  |    |    |    |    |    |    |     |     |     | 1   |     |
| CO2    |    | 2  |    | 2  | 2  |    | 2  |    | 2  |     |     |     | 2   |     |
| CO3    |    | 2  |    |    |    | 2  |    | 3  |    |     |     |     | 1   |     |
| CO4    |    |    |    |    | 3  |    |    |    |    |     |     |     | 2   |     |
| C05    |    | 3  |    |    |    |    |    |    |    |     |     |     |     |     |

**Assessment Pattern** 

| Assessment      | Knowledge  | Test | Teachers    | End Semester |
|-----------------|------------|------|-------------|--------------|
| Pattern Level   | Level      |      | Assessment/ | Examination  |
| No.             |            |      | Assignment  |              |
| K1              | Remember   | 05   | 01          | 05           |
| K2              | Understand | 05   | 02          | 10           |
| K3              | Apply      | 05   | 01          | 05           |
| K4              | Analyze    | 05   | 01          | 05           |
| K5              | Evaluate   | 00   | 00          | 00           |
| K6              | Create     | 00   | 00          | 00           |
| Total Marks 100 |            | 20   | 5           | 25           |

# Assessment table

| Assessment Tool | K1  | K2  | K3  | K4  | K5  |
|-----------------|-----|-----|-----|-----|-----|
| COs             | CO1 | CO2 | CO3 | CO4 | CO5 |
| Class Test      | 04  | 04  | 04  | 04  | 04  |
| (10+10 Marks)   |     |     |     |     |     |
| Teachers        | 01  | 01  | 01  | 01  | 01  |
| Assessment      |     |     |     |     |     |
| (5 Marks)       |     |     |     |     |     |
| ESE Assessment  | 05  | 05  | 05  | 05  | 05  |
| (25 Marks)      |     |     |     |     |     |

ć

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

| AC 3002: Seminar     |                    |  |  |  |  |  |  |  |  |
|----------------------|--------------------|--|--|--|--|--|--|--|--|
| Teaching Scheme      | Examination Scheme |  |  |  |  |  |  |  |  |
| Practical: 2Hrs/week |                    |  |  |  |  |  |  |  |  |

**Course description**: After completing this course, students will develop the life-long learning habit of archiving, assessing, and sharing their learning by creating a portfolio to honor, understand, and connect their learning from self to global society for the betterment of both. The seminar will cover topics of current interest or provide in-depth coverage of selected topics.

#### **Course Objectives:**

To survey selected topics addressing issues of science in society today To familiarize with scientific literature To collect information on each topic To assimilate, synthesize and integrate information

To organize the information on each topic into an analysis structured in this manner To discuss the information and present work in prescribed formats

#### **Course Outcome**

After completing the course, students will be able to:

| CO1 | Identify and compare technical and practical issues related to the area of program      |
|-----|-----------------------------------------------------------------------------------------|
|     | specialization.                                                                         |
| CO2 | Outline annotated bibliography of research demonstrating scholarly skills.              |
| CO3 | Prepare a well organized report employing elements of technical writing and critical    |
|     | thinking.                                                                               |
| CO4 | Demonstrate the ability to describe, interpret and analyze technical issues and develop |
|     | competence in presenting.                                                               |

#### **Detailed description:**

Seminar should be based on literature survey on any current topic, with audiovisual aids, graphs, charts and models as assigned to them on individual basis. It will be submitted as a report in hard bound. The candidate will have to deliver a seminar presentation in front of the examiners, one of them will be guide and other will be the examiner appointed by BoS. The performance of the student will be evaluated by both examiners jointly based on the content of the seminar, delivery of seminar and answers to the queries of the examiners.

#### Mapping of Course outcome with Program Outcomes

| Course  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|
| Outcome |     |     |     |     |     |     |     |     |     |      |      |      |      |      |
| CO1     | 1   |     | 2   |     | 3   |     |     | 2   | 1   | 1    |      |      | 1    |      |
| CO2     |     |     | 3   |     |     |     | 2   | 2   |     |      |      |      | 3    |      |
| CO3     | 1   |     |     | 2   |     | 2   |     |     |     |      |      |      | 3    |      |
| CO4     |     |     | 1   | 1   |     |     |     | 1   |     |      |      |      | 3    |      |