GOVT. COLLEGE OF ENGINEERING AURANGABAD

CURRICULUM

S. Y. B. Tech. (Mechanical Engineering) Department of Mechanical Engineering 2018-2019

					Seme II								
Sr. No	Code	Subject	Pe	Conta riod rs.)	ct		Co	ontinuo Theo y		aluation	n in tei	rms of Ma Practi c al	arks
			L	T	Р	Credits	Class Test I	Class test II TA		ESE	TW	/Viva Voce	Total
1.	MA 2001	Engineering Mathematics – III	4	0	0	4	15	15	10	60	-	-	100
2.	ME 2001	Engg Thermodynamics	2	1	0	3	15	15	10	60	-	-	100
3.	ME 2002	Machine Drawing	3	0	0	3	15	15	10	60	-	-	100
4.	ME2003	Manufacturing Process	2	0	0	2	10	10	05	25	-	-	50
5.	#	Professional Elective I	3	0	0	3	15	15	10	60	_	-	100
6.	*	Open Elective I	3	0	0	3	15	15	10	60	-	-	100
7.	HS 2001	Environment Studies	4	0	0	4	15	15	10	60	-	-	100
8.	ME 2006	Lab-Engg Thermodynamics	0	0	2	1	-	-	-	-	25	25	50
9.	ME 2007	Lab- Machine Drawing	0	0	2	1	-	-	-	-	25	25	50
10.	ME 2008	Lab-Workshop III	0	0	2	1	-	-	-	-	25	25	50
11.	\$	Audit Course I	0	0	2	0	-	-	-	-	-	-	-
		Total	21	1	8	25	100	100	65	385	75	75	800
			1		Seme IV								
~ ~ ~ ~				Conta	ct		Co			aluation	n in te	rms of Ma	arks
Sr.No	Code	Subject		riod			Theor					Practica	
			(H)	rs.)	r	-		У		1		l/ Viva	
							Class	Class				Viva	
			L	Т	Р	Credits	Test	test	ТА	ESE	TW	1000	Total
1.	ME 2009	Electrical Machines	2	0	0	2	I 10	II 10	5	25	-	_	50
2.	ME 2009	Mechanisms of Machines	$\frac{2}{2}$	1	0	3	15	15	10	60	_	_	100
3.	ME 2010	Applied Thermodynamics	3	0	0	3	15	15	10	60	-	_	100
4.	ME 2012	Strength Of Materials	2	0	0	2	10	10	5	25	-		50
5.	#	Professional Elective II	3	0	0	3	15	15	10	60	-	-	100
6.	\$	Audit Course II	0	0	2	0	-	-	-	-	-	-	-
7.	ME 2016	Lab - Electrical Machines	0	0	2	1	-	-	-	-	25	25	50
8.	ME 2017	Lab- Mechanisms of Machines	0	0	2	1	-	-	-	-	25	25	50
0	1		1		1			l	İ	1	1	27	00
9.	ME 2018	lab - Applied Thermodynamic s	0	0	2	1	-	-	-	-	25	25	50
9. 10. 11.	ME 2018 ME 2019 ME 2020	Thermodynamic	0 0 0	0 0 0	2 2 2	1	-	-	-	-	25 25 25	25	

Structure for Second Year B. Tech. (Mechanical Engineering) (Full Time) Choice Based Credit System

12.	ME 2021	Lab- Workshop IV	0	0	2	1	-	-	-	-	25	25	50
		12	2	14	19	65	65	40	230	150	150	700	
							165					225	
	Grand Total				22	44		165	105	615	225		1500

L = Lecture, T = Tutorial, P = Practical, TA = Teacher Assessment, ESE = End Semester Examination

#Professional Elective I

*Open Elective I

ME 2004 Engg Materials ME 2005 Biomechanical Engineering ME 2022 - Total Quality Management ME2023- Entrepreneurship

Development Programme

\$ Audit Course I

AC 2001 NSS AC 2002 Group Discussion AC 2003Yoga

#Professional Elective II

ME 2013 Machine Tools ME2014 - Material Handling ME2015 Surface Coating

\$ Audit Course II

AC 2004 Professional Communication AC2005 Social innovation

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

			Contact Period (Hrs.)				Continuous Evaluation in terms of Marks							
							Class	Theo y	r			Practical /Viv		
Sr No	Code	Subject	L	Т	Р	Credits	Clas s Test I	Class test II	ТА	ESE	TW	a Voce	Tota l	
						Semeste								
		Engineering Mathematics				rI	15	15	1					
1.	MA 2001	- III	4	0	0	4	15	15	10	60	_	-	100	
2.	ME 2001	Engg Thermodynamics	2	1	0	3	15	15	10	60	-	_	100	
3.	ME 2001 ME 2002	Machine Drawing	3	0	0	3	15	15	10	60	_	_	100	
			2		0	2	10	10	05	25		_	50	
4.	ME 2003	Manufacturing Process Lab-Engg	2	0	0	2		10	05	23	-		50	
5.	ME 2006	Thermodynamics	0	0	2	1	-	-	_	_	25	25	50	
<u> </u>	ME 2000	Lab- Machine Drawing	0	0	2	1	_	_	-	_	25	25	50	
7.	ME 2007 ME 2008	Lab-Workshop III	0	0	2	1	_	_	-	_	25	25	50	
	ML 2000				2	0	-	-	_	_	-	-	-	
	\$	Audit Course I	0	0										
8.	\$	Audit Course I Total	0 11	0 1	2 8	15 Semeste	55	55	35	205	75	75	500	
8. Sr	\$ Code		11 C	1 Cont Perio	8 act	15	55	55	35	I	75		1	
8.		Total	11 C	1 Conta Perio	8 act	15 Semeste	55	55 Continuo Theo	35 ous Ev	I	75	75 ms of Marl Practic	1	
8. Sr		Total	11 C	1 Cont Perio	8 act	15 Semeste r II	55	55 Continuo Theo y	35 ous Ev	I	75	75 ms of Marl Practic al	ζS	
8. Sr		Total	11 C	1 Cont Perio	8 act	15 Semeste	55	55 Continuo Theo	35 ous Ev	I	75	75 ms of Marl Practic	1	
8. Sr		Total		1 Cont Perio d (Hrs	8 act 5.)	15 Semeste r II	55 (Class Tes	55 Continuo Theo y Class tes ts t	35 ous Ev	aluation	75 n in ter	75 ms of Marl Practic al /Viva	cs Tota	
8. Sr No	Code #	Total Subject Professional Elective I	11 C L 3	Conta Period (Hrs 0	8 act 5.) P 0	15 Semeste r II Credits	55 Class Tes t I	55 Continuo Theo y Class tes t II 15	35 ous Ev or TA 10	aluation ESE 60	75 n in ter	75 ms of Marl Practic al /Viva Voce	cs Tota 1	
8. Sr No 1*	Code # HS 2001	Total Subject Professional Elective I Environment Studies	11 C L 3 4	1ContaPeriod(Hrs000	8 act 5.) P 0 0	15 Semeste r II Credits	55 Class Tes t I 15 15	55 Continuo Theo y Class tes t II 15	35 us Ev Dr TA 10 10	aluation ESE 60 60	75 n in ter	75 ms of Marl Practic al /Viva Voce	Tota 1 100	
8. Sr No 1* 2. 3.	Code # HS 2001 ME 2009	Total Subject Professional Elective I Environment Studies Electrical Machines	11 C L 3 4 2	Conta Period (Hrs 0	8 act 5.) P 0 0 0	15Semeste r IICredits342	55 Class Tes t I 15 15 10	55 Continuo Theo y Class tes t II 15 15 10	35 ous Ev or 10 10 5	ESE 60 60 25	TW	75 ms of Marl Practic al /Viva Voce	Tota 1 100 100 50	
8. Sr No 1* 2. 3. 4.	Code # HS 2001 ME 2009 ME 2010	Total Subject Professional Elective I Environment Studies Electrical Machines Mechanisms of Machines	11 C L 3 4 2 2	1Cont:Periodd(Hrs0001	8 act 5.) P 0 0 0 0	15Semeste r IICredits3423	55 Class Tes t I 15 15	55 Continuo Theo y Class tes t II 15	35 us Ev Dr TA 10 10	aluation ESE 60 60	75 n in ter TW - - - - - -	75 ms of Marl Practic al /Viva Voce - - - -	Tota 1 100 100 50 100	
8. Sr No 1* 2. 3.	Code # HS 2001 ME 2009	Total Subject Professional Elective I Environment Studies Electrical Machines Mechanisms of Machines Lab - Electrical Machines	11 C L 3 4 2	1Cont:Periodd(Hrs000	8 act 5.) P 0 0 0	15Semeste r IICredits342	55 Class Tes t I 15 15 10	55 Continuo Theo y Class tes t II 15 15 10	35 ous Ev or 10 10 5	ESE 60 60 25	75 n in ter TW - - -	75 ms of Marl Practic al /Viva Voce 25	Tota 1 100 100 50	
8. Sr No 1* 2. 3. 4.	Code # HS 2001 ME 2009 ME 2010	Total Subject Professional Elective I Environment Studies Electrical Machines Lab - Electrical Machines Lab - Mechanisms of Machines	11 C L 3 4 2 2	1Cont:Periodd(Hrs0001	8 act b s.) P 0 0 0 0 2 2 2	15Semeste r IICredits3423	55 Class Tes t I 15 15 10 15	55 Continuo Theo y Class tes t II 15 15 10 15	35 Dus Ev TA 10 10 5 10	ESE 60 60 25 60	75 n in ter TW - - - 25 25	75 ms of Marl Practic al /Viva Voce - - - -	Tota 1 100 100 50 100 50 50	
8. Sr · No 1* 2. 3. 4. 5.	Code # HS 2001 ME 2009 ME 2010 ME 2016	Total Subject Professional Elective I Environment Studies Electrical Machines Mechanisms of Machines Lab - Electrical Machines Lab - Mechanisms of	11 C I I I I I I I I I I I I I I I I I I	1ContaPeriodd(Hrs000010	8 act b s.) P 0 0 0 0 0 2	15Semeste r IICredits34231	55 Class Tes t I 15 15 10 15 -	55 Continuo Theo y Class tes t II 15 15 10 15 -	35 ous Ev or 10 5 10 -	ESE 60 60 25 60 -	75 n in ter TW - - - 25	75 ms of Marl Practic al /Viva Voce 25	Tota 1 100 100 50 100 50	

Structure for Second Year B. Tech. (Mechanical Engineering) (Part Time) Choice Based Credit System

						Semester III							
Sr. No	Code	Subject	Contact Perio d (Hrs.)				Continuous Evaluation in terms of Marks						
							Theor y					Practic al /Viva	
			L	Т	Р	Credits	Class Test I	Class test II	ТА	ESE	TW	Voce	Tota l
1.	ME2011	Applied Thermodynamics	3	0	0	3	15	15	10	60	-	-	100
2.	ME2012	Strength Of Materials	2	0	0	2	10	10	5	25	-		50
3.	#	Professional Elective II	3	0	0	3	15	15	10	60	-	-	100
4*	#	Open Elective	3	0	0	3	15	15	10	60	-	-	100
5.	\$	Audit Course II	0	0	2	0	-	-	-	-	-	-	-
6.	ME 2017	Lab - Applied Thermodynamic s	0	0	2	1	-	-	-	-	25	25	50
7.	ME 2018	Lab – Strength Of Materials	0	0	2	1	-	-	-	-	25	25	50
8.	ME 2020	Lab- CAME I	0	0	2	1	-	-	-	-	25	25	50
		Total	11	0	8	14	55	55	35	205	75	75	500
		Grand Total	33	2	22	44	165	165	105	615	225	225	1500

#Professional Elective I

***Open Elective**

ME 2004 Engg Materials ME 2005 Biomechanical Engineering

#Professional Elective II

ME 2013 Machine Tools ME2014 - Material Handling ME2015 Surface Coating ME 2022 - Total Quality Management ME2023- Entrepreneurship Development Programme

\$ Audit Course

AC 2001 NSS AC 2002 Group Discussion

AC 2003Yoga **\$ Audit Course II** AC 2004 Professional Communication

Hend of The Department Mechanical Engineering Govt. Engg. College A'bad

MA 2001: Engineering Mathematics-III							
Teaching Scheme	Examination Scheme						
Lectures: 4 Hrs/Week	Class Test-I : 15 Marks						
Total Credits : 04	Class Test-II : 15 Marks						
	Teachers Assessment: 10Marks						
	End Semester Exam : 60 Marks						

Course description:

Engineering Mathematics-III (MA 2001) is a compulsory course to all second year engineering students of the institute in the Semester –III and is a continuation of previous year courses viz. Engineering Mathematics-I (MA1001) and Engineering Mathematics-II (MA1002). This course intends to provide engineering students a coherent and balanced account of major mathematical techniques and tools.

Course Objective:

This course intends to provide an overview of analytical and numerical techniques to solve ordinary and partial differential equations, which we apply to solve many engineering problems of mechanical, civil electrical Engineering.

Course Outcomes:

After completing the course, students will be able to:

CO1	Determine the solution of second and higher order linear differential equation and apply knowledge of LDE to solve the problems in Engineering
CO2	Classify, formulate and solve the first order and second order linear, non-linear partial differential equations and apply the knowledge of partial differential equations to solve the problems in Engineering
CO3	Find approximate solution of ordinary differential equations of first order and find the convergence and stability of the approximate solutions

Unit-I	Linear Differential Equations (LDE):
	Linear Differential Equations (LDE) with constant coefficients, Differential equations
	reducible to LDE with constant coefficients, Simultaneous LDE with constant
	coefficients
Unit-II	Applications of Linear Differential Equations (LDE):
	L-C-R Circuit, Coupled Electrical Circuits, Bending of beams, Spring-Mass system
Unit-III	Partial Differential Equations (PDE):
	First order linear/ nonlinear Partial Differential Equation Formation (PDE), Lagrange's
	equation, Linear Partial Differential Equations (PDE) of second and higher order with
	constant coefficients, Linear non-homogeneous PDE.
Unit-IV	Applications of Partial Differential Equations:
	Solutions of one-dimensional wave equation, one-dimensional heat equation, Steady
	state solution of two-dimensional heat equation, Fourier series solutions in Cartesian
	coordinates.

Unit-V	The approximation for the solution of first order Ordinary Differential Equations:
	Taylor series method, Euler's method, Euler's modified Method, Runge-Kutta Fourth
	order Method, Milne's Predictor-Corrector Method, and Solution of system of ordinary
	differential equations by Runge-Kutta methods.

Text and Reference Books

- 1. A Text Book of engineering Mathematics (Vol.1 &2) 6th Edition by P.N.Wartikar & J.N.Wartikar Vidhyarthi Griha Prakashan, Pune.
- 2. Advanced Engineering Mathematics by Erwin Kreyszig, 10th Edition, Willey Eastern Ltd. Mumbai, 2000.
- 3. Engineering Mathematics-A Tutorial Approach by Ravish R Singh, Mukul Bhatt, 2009.
- 4. Higher Engineering Mathematics by B. S. Grewal, Khanna publication, New Delhi, 2007.
- 5. Advanced Engineering Mathematics by H. K. Dass, S. Chand and Sons, 2004.
- 6. Calculus by G. B. Thomas and R. L. Finney, Addison- Wesley, 1996
- 7. Elements of Partial Differential Equations by I.N. Sneddon, Dover Publications Inc. 2006.

Mapping of Course outcome with Program Outcomes (Mechanical Engineering)

Course Outcom e	PO 1	PO2	PO 3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
CO1	1		1		2	3							2	
CO2	1		2		2	3							2	
CO3	1		3		3	3								

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME2001: ENGINEERING THERMODYNAMICS								
Teaching Scheme	Examination Scheme							
Lectures: 2 Hrs/Week	Class Test-I : 15 Marks							
Tutorial: 1 Hr/Week	Class Test-II : 15 Marks							
Total Credits : 03	Teachers Assessment: 10Marks							
	End Semester Exam : 60 Marks							

Prerequisites: BS1001 Engineering physics, BS 1003 Engineering Chemistry, MA 1001 Engineering Mathematics

Course description: This course consists of basic understanding and application of laws of engineering thermodynamics to the various practical engineering applications like engines, power plants, heat exchangers, pumps etc. Basic understanding of steam formation, steam properties and use of steam tables and Mollier diagram is included in this course. Theoretical analysis of various air standard cycles is covered in this course. Also this course includes theoretical and practical analysis of fuels and products of combustion process.

Course Objectives:

- Understand various types of energies and its applications in thermodynamic systems
- Applying thermodynamic concepts to thermodynamic systems
- Know various laws of thermodynamics and applications to thermodynamic system
- Application of ideal gas processes to thermodynamic systems
- Study steam properties, Interpret steam tables and Mollier charts with numerical applications
- Understand and analyze (numerical analysis) various types of air standard cycles
- To know various types of fuels their properties and applications
- To know the chemical analysis (Numerical treatment) of fuels and exhaust gases **Course Outcome**

After completing the course, students will be able to:

CO2 D	
	Define state of steam and perform steam property calculations
CO3 A	Analyze thermodynamic cycle performance
CO4 A	Analyze combustion of fuels and product of combustion

Unit1	First Law applied to Steady Flow Processes
	Conservation of energy, steady flow processes, SFEE, modification of SFEE for different

r	
	engineering devices such as nozzles, blowers, I.C. Engines, Compressors, Pumps, Turbines,
	throttling devices (Numerical Treatment)
Unit2	Second Law of Thermodynamics
	Limitations of first law of thermodynamics, thermodynamic temperature scale, Entropy,
	entropy as a property, available and unavailable energy, Quality of energy, reversible process
	and irreversible process, thermodynamic relations, Clausius- clapeyron Equations and their
	engineering applications, Carnot Theorem (Descriptive Treatment)
Lluit2	
Unit3	Properties of steam and pure substances
	Pure substance, phase, , p-v phase diagram, critical point, Triple point, Entropy of steam,
	steam tables, processes of steam, Enthalpy- Entropy diagram, steady flow process and
	determination of dryness fraction of steam (Numerical Treatment)
Unit4	Power cycles
	Definition of cycles, power producing cycles and power consuming cycles, Air standard
	cycles, air standard efficiency, Carnot cycle, Otto cycles, Diesel cycles, Dual combustion
	cycles, Comparison of Otto, Diesel and dual combustion cycles, Efficiency versus
	compression ratio for the same heat input, for constant maximum pressure and heat supplied.
	Fuel air cycle, Brayton cycles, Atkinson cycle, Ericsson cycle (Numerical Treatment)
Unit5	Fuels and Combustion
	Introduction, classification of fuels, calorific heating value of fuels, Determination of C.V. of
	fuels, Solid fuels, liquid fuels, gaseous fuels, Orsat apparatus and determination of minimum
	air required for combustion. Conversion of volumetric analysis to mass analysis, Combustion
	of gaseous fuels, conversion of volumetric analysis of gas into mass analysis (Numerical
	Treatment)
L	

Tutorial hours will be distributed equally to each unit

Text and Reference Books

- 1. Nag P.K., "Engineering Thermodynamics", Fourth Edition, TMH Publishing Co. New Delhi, 2008.
- 2. Rajput R.K., "A Text Book of Engineering Thermodynamics", Third Edition, Laxmi Publication, New Delhi 2007.
- 3. Ballaney P.L., "Thermal Engineering", Khanna Publications, New Delhi, 2014.
- 4. Domkundwar S, Kothandaraman C. P. & Domkundwar A., "A Course in Thermal Engineering", Dhanpat Rai and Co. publication, New Delhi, 2004.
- 5. Rao Y. V. C., "Engineering Thermodynamics", Universities Press, Hyderabad 2014
- 6. Ven Violin, "Classical Thermodynamics", Wiley publication, 2014

Mapping of Course outcome with Program Outcomes

Course	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO	PSO1	PSO
Outcom		2								0		12		2
e														
CO1	2	1	1		1	2	1							
CO2	3	1	1	1	2	1							1	
CO3	3	2	2	1	1	2								
CO4	3	2	3		1	1							1	
CO5	3	2	1				1						2	
CO6	3	2	1											

1 – High 2 – Medium 3 - Low

Teacher's Assessment: Teachers Assessment of 20 marks is based on one of the / or combination of few of following

- 1) Question & answer / Numerical solution
- 2) Presentation of case studies of thermodynamic system
- 3) Test consisting of multiple choice questions

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2002 : MACHINE DRAWING

Teaching Scheme Lectures: 3Hrs/Week Tutorial: -- Hr/Week Credits: 3

: 15Marks
: 15 Marks
10Marks
: 60 Marks

Prerequisites: ME 1003 Engineering graphics

Course description: After completing this course, students will have a broad and fundamental concept of intersection curves in sheet metal work, Apply concept of curves in manufacturing; apply the knowledge of developed surfaces in sheet metal product manufacturing, Assembly and Details

Course Objectives:

- To understand the intersection curves for joining the surfaces
- To apply fundamental concepts of various curves and its use in manufacturing
- To understand various developed surfaces in sheet metal product manufacturing
- To Understand Assembly drawings and details, concept of Bill of materials

Course Outcome

After completing the course, students will able to:

CO1	Draw curves of intersection of solids.
CO2	Construct a set of working drawings of a machine assembly including assembly drawings, detail drawings, bill of materials.
CO3	Applying the knowledge of sheet metal of manufacturing, draw the corresponding developed surfaces
CO4	Draw the engineering curves used in product design and mentioned in unit 2.

Unit 1	Intersection of Surfaces Line or Curve of intersection of two solids, Methods: Line method, Cutting-plane method. Intersection of vertical prism with prism, cylinder, cone (Horizontal or Inclined), Intersection of vertical Cylinder with cylinder, cone, prism (Horizontal or Inclined), Intersection of vertical cone with cone, prism, cylinder (Horizontal or Inclined), Intersection of Sphere with cylinder, prism (Horizontal or Inclined).
Unit 2	Engineering Curves & Gearing Introduction: Conics section, Cycloidal curves, Involute curves, and spirals Directrix, focus, eccentricity, Normal & Tangents, Construction of ellipse by directrix focus method, concentric circle method, arcs of circle method, oblong method, Construction of Parabola / hyperbola by directrix focus method, Rectangle method, Tangent method, Cycloid- Epicycloids & hypocycloid, Trochoid - Epitrochoid & Hypotrochoid (Theoretical treatment only) Gears: construction of spur gear tooth profile by accurate / approximate method
Unit 3	

Un	it Assembly and Details
4	Production Drawing: Introduction, Types of production drawings, Detailing or Part
	Drawings, Working Assembly Drawings,
	Assembly and detail Drawings of various component
	Shaft joints: Cotter joint and Knuckle joint.
	Keys & Shaft coupling: Muff, Flanged, Flexible, Universal and Oldham's coupling.
	Shaft bearing: Solid and bush bearing, Plummer block, Footstep bearing.
	Pipe joint: Flanged joint, Socket and Spigot joint, Hydraulic joint, Union joint, Gland &
	Stuffing Box, Expansion joint.
	Pulley : Belt pulley, V belt pulley, Fast and loose pulley, Speed cone pulley, Built up pulley.
	Engine Parts: Piston, Stuffing box, cross head, Vertical & Horizontal engine, Connecting
	rod, Crank, Eccentric.
	Valves: Steam stop valves, Feed check valve, Safety valves, Blow off cock.
	Lathe Tail stock, Machine vice, Drill jigs and Milling fixture, Screw jack.
	Lathe Tail stock, Machine vice, Drill jigs and Milling fixture, Screw jack.

Reference Books

- 1. Bhatt N. D., Panchal V. M., "Engineering Drawing", Charotar Publishing House, 2010.
- 2. Dhabhade M. L., "Engineering Graphics", Vol. I and Vol.-II, Vision Publications, Pune, 2003.
- 3. Gill P. S., "Engineering Drawing", S. K. Katariya & Sons, Delhi, 2013.
- 4. Bhatt N. D., Panchal V. M., "Machine Drawing", Charotar Publishing House, 2014.
- 5. Siddheswar, Kannaiyah, and Shastry VVS, "Machine Drawing", TMH
- 6. Dhawan, "A Text Book of Machine Drawing," S. Chand publications 2014

Mapping of Course outcome with Program Outcomes

Cours	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO
e													1	2
Outco														
m														
e														
CO1		1	1		1								2	
CO2		2	2										1	
CO3		2	3		1									
CO4		2	2	1	1		2						2	

1 – High 2 – Medium 3 – Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2003 : MANUFACTURING PROCESSES										
Teaching Scheme	Examination Scheme									
Lectures: 2Hrs/Week	Class Test I : 10 Marks									
Credits: 2	Class Test II : 10Marks									
	Teachers Assessment : 05 Marks									
	End Semester Exam : 25 Marks									

Prerequisites: ME 1001 Basics of Mechanical Engineering

Course description: After completing this course, students will have a broad and fundamental understanding of the concepts of moulding in practice, knowledge of pattern making and related concepts, concept of plastic processing, knowledge of forging operation, concept of sheet metal and joining process.

Course Objectives:

- To know various moulding processes and tools
- Understand various pattern making tools and processes
- Understand fundamental concept of plastic manufacturing processes
- Understand various forging processes and its tools and heat treatment

Course Outcome

After completing the course, students will able to:

CO1	Understand fundamental concept of pattern making and moulding in practice
CO2	Understand concept of plastic processing
CO3	Enhance the knowledge of Mechanical working operation
CO4	Understand new technologies in metal joining process

Unit 1	Pattern Making and Mould Making
	Introduction, pattern making tools, sawing tools, making and layout tools, pattern materials,
	factors affecting selection of pattern materials, master patterns, pattern allowance, types of
	pattern, core print, core boxes.
	Moulding tools and equipments, moulding sands, types of moulding sand, grain shape
	and size of sand, sand additives, properties of moulding sand preparatory, sand testing,
	moulding processes, moulding processes based on sand used, making a green sand mould,
	typical moulding problems, machine moulding, core and core making, cleaning of casting.
Unit 2	Plastics and Their Processing
	Introduction, polymers, classification, polymer additives, cellulose derivatives, synthetic
	resins, elastomer, plastic processing methods, forming methods, lamination of plastics,
	joining of plastics

Unit 3	Mechanical Working of Metals									
	Introduction, hot working, hot rolling, piercing of seamless tubing, drawing, deep drawing,									
	hot spinning, cold working, cold rolling, cold drawing, cold bending, cold spinning									
	Introduction, forging materials, heating devices, forging temperatures, hand tools and									
	appliances smith forging operations, forging processes, hand forging, power forging,									
	impression die forging, drop hammers, press forging, roll die forging press verses hammer									
	forging, machine or upset forging, high energy rate forging, effects of forging, defects in									
	forging, heat treatment of forging, advantages and disadvantages									
Unit 4	Metal Joining Processes									
	Welding processes- Introduction, weldability, Manual Metal Arc Welding (MMAW),									
	Plasma Arc, Submerged Gas welding Electron beam welding, Friction stir welding,									
	Ultrasonic welding									

Text and Reference Books

- 1. DeGarmo, Black Konser, "Materials and Processes in Manufacturing", PHI, New Delhi
- 2. Schey J. A., "Introduction to Manufacturing processes", Mc Graw Hill, New Delhi
- 3. Lindberg A., "Processes and Materials of Manufacturing", Lindberg
- 4. Raghuvanshi B.S., "Workshop Technology", Vol I, Asia Publishing House
- 5. Hazra Choudhary, "Elements of Workshop Technology", Vol. I, Khanna Publishers
- 6. Bawa H.S., "Workshop Technology", Vol. I Mc Graw Hill, New Delhi
- Chapman W A J, "Workshop Technology", Taylor and Francis pub, Vol.1 and Vol. 2, Ed.5th, 2015

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outco														
m e														
CO1	3	1	2	1	2	3							1	
CO2		1	1	2	2								2	
CO3		2	2	1	2	3							1	
CO4	3	1	2	1	2									

1 – High 2 – Medium 3 - Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2004: ENGINEERING MATERIALS					
Teaching Scheme	Examination Scheme				
Lectures : 3 Hrs/ Week	Class Test I	: 15 Marks			
Credits : 3	Class Test II	: 15 Marks			
	Teachers Assessment :	10 Marks			
	End Semester Exam	: 60 Marks			

Prerequisites: Nil

Course Description: After completion of the course, students will have understanding of various modern engineering materials. They will be able to analyze the performance of various composite materials.

Course Objectives

- To understand the selection of composite materials for specific Application.
- To know the fabrication methods and structural applications of different types of composite materials.
- To understand mechanical properties of Plastic Materials.
- To know the process of Particle Reinforced Composites.
- To know Different types of Composite Materials.

Course Outcome

After completing the course, students will be able to:

CO1	Analyze Fracture Behavior and Strengthening Principles of various types of
	Composites.
CO2	Evaluate the various types of Composite Materials.
CO3	Analyze the Fabrication Methods and Structural Applications of different types of Composite Materials.

Unit 1	Composite Materials: Introduction, Reinforcement, Natural Fibers, Synthetic
	Fibers, Particulate and Whiskers Reinforcement, Reinforcement- Matrix Interface.
Unit 2	Classification of Composite materials, Dispersion Strengthened particle
	reinforced composite laminates, Properties of Matrix and reinforcement Materials.
Unit 3	Micromechanics and principles of strengthening, Elastic properties, Stress -strain
	relations, fracture behavior, Fabrication methods and structural Applications of
	Different types of Composite Materials.
Unit 4	Deformation and strengthening of plastic materials, mechanical properties, Creep
	and Fracture of Polymeric Materials, Visco-elasticity, Stress Relaxation and Glass
	transition Temperature.
Unit 5	Particle reinforced Composites: Large particle Composites, Dispersion
	strengthened Composites, Fiber reinforced composites: Influence of Fiber length,
	Orientation and Concentration, Fiber Phase.

Text And Reference Books

- 1. Chula K.K, "Composite Material Science and Engineering", Pub. Springer, 2015.
- Raghavan V., "Physical Metallurgy Principles and Practice", Pub. PHI, Learning, 2nd Edition, 2011
- 3. Callister William," Material Science and Engineering- An Introduction, "6th Edition John Wiley & Sons, 2015

Mapping of Course Outcome with Program Outcomes

Course Outcom e	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1												1	
CO2			1	2										
CO3					3	2							1	
CO4				1		2								
CO5	1												1	

1- High 2- Medium 3- Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2005 : BIO-MECHANICAL ENGINEERING					
Teaching Scheme	Examination Scheme				
Lectures: 3 Hrs/Week	Class Test-I : 15 Marks				
Total Credits : 03	Class Test-II : 15 Marks				
	Teachers Assessment: 10Marks				
	End Semester Exam : 60 Marks				

Prerequisites: BS1005: Biology

Course description: After completion of the course, students will have understanding of fundamentals of Bio-medical Engineering. They will have knowledge of various tissues, their anatomy and physiology. They will be able to understand bio material used for artificial organs. Their creativity will be addressed in mini project as a part of Teachers' assessment. They will know artificial replacement for natural organs. They will know CT, MRI, CATE, and Bio-CAD. Students will acquire skill to be entrepreneur in the field of Bio medical Engineering.

Course Objectives:

- To provide a fundamentals of bio-medical engineering, tissue engineering
- To accustom with various bio materials
- To impart knowledge about applications of bio medical engineering
- To familiarize with practical protocols regulations in the field

Course Outcome

After completing the course, students will be able to:

CO1	Understand the principles and applications of bio medical engineering
CO2	Understand different forms of bio mechanics (mentioned in unit 2).
CO3	Explain the bio compatibility and toxicological screening of materials
CO4	Study the definition, structure and organization of tissues, comparison of imaging modes.
CO5	Understanding testing and measurement of specimen
CO6	Create capacity to practically understand use of artificial organs

_ 00001_00F A	
Unit 1	Introduction, Engineering perspectives of biological sciences: Where engineering meets
	biology and where biology meets engineering. Biology as an integrated Science; Case
	studies on integrating biology with engineering. The modern health care system,
	Biomedical engineering introduction, roles played by biomedical engineers, morality &
	ethical issues introduction to anatomy and physiology, cellular organization, tissues,
	major organ systems, homeostasis.
Unit 2	Introduction to basic mechanics, heart tissues, soft tissues, testing and measurement of
	specimen, bio mechanics of joints, locomotion, cardiovascular mechanics, fluid
	mechanics
Unit 3	Definition of bio materials, requirement and properties of bio materials, metallic implant
	materials, polymeric implant materials, ceramic implant materials, composite implant
	materials, bio compatibility and toxicological screening of biomaterials.
Unit 4	Introduction to tissue engineering, definition, structure & organization of tissues, cell
	culture, molecular biology aspects, scaffold & transplant medical imaging, diagnostic

	ultra sound imaging, CT & MRI, comparison of imaging modes, computer aided tissue							
	engineering (CATE) scope of CATE, Bio CAD & human body modeling							
Unit 5								
emre	organs, artificial kidney, artificial heart lung machine, audiometry, rehabilitation							
	engineering, impairment, disabilities & handicaps measurement & assessment,							
	characterizing engineering concepts in sensory and motor rehabilitation engineering.							
T								
	d Reference Books							
	rk J. B., "Biomaterials- science & engineering plenum", press 1984							
2.Bł	att S. V., "Biomaterials", Narosa publishing house 2002							
3.A1	exander R Mc Neill, "Biomechanics", Chapman and Hall, 1975							
4.Gł	ista D. N., "Biomechanics of Medical devices", macek Dekker1982							
5.Lo	dish H, Berk A, Zipursky SL, et al. (2000) Molecular Cell Biology. W. H. Freeman.							
6.Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2000). Lehninger principles of biochemistry.								
New								
York: Worth Publishers.								
7. Lewin B. (2000) Genes VII. Oxford University Press								
8.Ra	o CNR, et.al. Chemistryof Nanomaterials: Synthesis, Properties and Applications.							
9.Eg	gins BR. (1006) Biosensors: An Introduction. John Wiley & Sons Publishers.							
10. I	Palsson B.O. and Bhatia S.N. (2009) Tissue Engineering. Pearson.							

Mapping of Course Outcomes with program Outcomes

Course	PO	PO1	PO1	PO1	PSO	PSO								
	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1		2											2	
CO2	2		1											
CO3		3	2										1	
CO4			1											
CO5	1			2									2	
CO6		3	1										1	

1 – High 2 – Medium 3 - Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

HS 2001 : ENVIRONMENTAL SCIENCE					
Teaching Scheme	e	Examination Scheme			
Lectures	: 4Hrs/Week	Class Test I	: 15 Marks		
Total Credits	:4	Class Test II	: 15 Marks		
		Teachers' Assessment	: 10Marks		
		End -Semester Exam	: 60 Marks		

Prerequisites: Nil

Course Objectives:

- Become aware of the importance of soil, water and air for humans and other life forms on earth.
- Become aware of species extinction and loss of biodiversity.
- Become of aware of various nation and international efforts that are in place for conserving the environment
- Get acquainted with national laws and global environment conservation guidelines

Course Outcomes:-

After completing the course, students will be able to:

CO1	Understand and appreciate the physical and chemical foundation of earth and its
	environment
CO2	Understand the origin and definition of life
CO3	Understand the origin and evolution of human societies and major transformation brought
	by industrialization
CO4	Learn about basics of environmental economics

Unit 1	Natural Resources, Water Resources: Use and over utilization of surface and ground water, Floods ,Drought .conflict over water ,dams : benefits and problem ,Energy resources growing energy needs ,renewable and non-renewable energy sources use of alternate sources .Land resources : land degradation , soil erosion and desertification .Role of an individual in conversation of natural resources .
Unit 2	Global level effort towards environment conservation & pollution control. Role of India at global level pollution, conservation & policies of Govt of India towards the control of river pollution. Policy of Govt of Maharashtra towards the control of various pollution. environment protection act, vehicular emission standard, noise pollution (regulation & control)rules, concept of ISO 14000
Unit 3	Biodiversity & its conservation, biogeographically classification of India, biodiversity at global, National & local levels. India as mega diversity nation, hot spots of biodiversity, Endangered & endemic species of India, conservation of biodiversity, In-situ & Ex-situ conservation of biodiversity, forest conservation act.
Unit 4	Environmental pollution: definition, cause, effects& control measure of air pollution, water pollution, noise pollution, thermal pollution, nuclear hazards ,electronic waste, Solid waste management: cause, effect & control measure of urban & industrial waste. Municipal solid waste (management & handling) rules.

Unit 5	Urban problem related to water & energy, water conservation, rain water harvesting &
	water shed management, climate change, and nuclear accident. Role if individual in
	prevention of pollution. Disaster management-flood, earthquake, cyclone & landslides

Text and Reference Books

- 1. Erach Bharucha, "Textbook of Environmental studies for undergraduate course", University Grants Commission, New Delhi, 2014.
- 2. Rajgopalan R.," Environmental studies", Oxford university press, 2013
- 3. Environment Protection Act 1986

Mapping of Course outcome with Program Outcomes

Course	PO	PO	PO	РО	PO	PO	PO	PO	PO9	PO1	PO1	PO1	PSO	PSO
Outcome	1	2	3	4	5	6	7	8		0	1	2	1	2
CO1	1													
CO2	1												2	
CO3	1												3	
CO4							2							

1 – High 2 – Medium 3 - Low

Hend of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2006: Lab- ENGINEERING THERMODYNAMICS							
Teaching Scheme	Examination Scheme						
Practical: 2 Hrs/Week	Term Work	: 25 Marks					
Credit: 1	Practical Examination & Viva Voce :25 Marks						

Course Outcome

As an outcome of completing the Laboratory course, students will able to:

CO1	Understand the function of boiler and its mountings and accessories
CO2	Experimentally measure the calorific value using ORSAT apparatus
CO3	Experimentally measure the dryness fraction of steam using calorimeter
CO4	Communicate effectively by preparing laboratory and industry visit report

List of Experiments

Sr. No.	Details
1	Study of any two boilers:
	a) Babcock and Wilcox boiler and
	b) Any high-pressure boiler
2	Study of mountings and accessories of boilers.
3	Study and determination of C.V. of solid / liquid fuel using Bomb Calorimeter.
4	Study and determination of C.V. of gaseous fuels using Boy's Gas calorimeter
5	Analysis of exhaust gases using Orsat apparatus.
6	Determination of dryness fraction of steam using tank calorimeter.
7	Determination of dryness fraction of steam using separating and throttling calorimeter.
8	Visit to industry related to thermodynamics (e.g. power plant, dairy, cold storage)

Term work

The term work will consist of submitting a file for all the experiments with neatly written records of the study and diagrams.

The term work will be assessed by the course coordinator

Practical Examination

The Practical Examination will comprise of performing the experiment and viva voce on the syllabus

The practical will be assessed by two examiners, one will be the course coordinator and other will be examiner appointed by DSB

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcome														
CO1	3	2	1		1	1							1	
CO2	3	2	1		1	2	1						1	
CO3	3	2	1		2	2	1							
CO4			3	1	1	2	1	2	1	1			1	
1 – High	1 – High 2 – Medium			3 – L	OW									

6

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2007: Lab- MACHINE DRAWING

Teaching Scheme	Examination Scheme	
Practical: 2 Hrs/Week	Term Work	: 25 Marks
Credit: 1	Practical Examination &	& Viva Voce :25 Marks

Course Objectives:

Acquiring knowledge of understanding and drawing machine component

Course Outcomes:

CO1 Enhance the knowledge of drawing machine components	
---	--

Sr. No.	Details							
1)	One half imperial sheet on Problems on Unit I Intersection of Surfaces							
2)	One half imperial sheet on Problems on Unit II Engineering Curves & Gearing							
3)	One half imperial sheet on Problems on Unit III Development of Surfaces							
4)	4) One half imperial sheet on Problems on Assembly Drawing							
5)	One half imperial sheet on Problems on Detail Drawing							
6)	One half imperial sheet on Problems on Detail Drawing							
7)	Two half imperial sheet on Problems on Detail Drawing							
	Machine Elements Screwed Fastenings-Screw Thread Nomenclature, Form of the							
	Screw Threads, Thread Series, Designation, Thread Profiles, Multistart Threads, Right							
	Hand and Left Hand Threads, Representation of Threads, Bolted Joints, Studded Joint,							
	Eye Bolt, Machine Screws and Cap Screws, Set Screws, Locking Devices for Nuts.							
	Riveted Joints-Introduction, Classification of Riveted Joints, Terminology of Riveted							
	Joints, Processes for Producing Airtight Joints, Rivet Heads.							

Term Work

Students have to submit all the drawing sheets duly checked by the course coordinator and bound in the folder. The course coordinator will assess the term work.

Practical / Oral Examinations

Viva – voce based on the drawing sheets submitted as Term work, syllabus, and Assignment submitted.

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcome														
CO1	1	2	1										1	

1 – High 2 – Medium 3 – Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2008: WORKSHOP PRACTICE- III

Teaching Scheme	Examination Scheme
Practical: 2Hrs/Week	Term Work: 25Marks
Credit : 1	Practical Examination & Viva Voce: 25Marks

Course Objectives: To acquire the hands on experience and skills for various turning operations, milling operations, welding, forging and black smithy methods

Course Outcome

As an outcome of completing the Laboratory course, students will able to:

CO1	Acquaring the skills in machining operations like turning, milling, welding and
	blacksmithy.

List of Experiments

Sr. No.	Details
1	Turning Shop: Study of different operations to be carried on the lathe machine,
	Machining time calculations, taper turning methods (calculations), single point cutting
	tool operations, external threading, facing, finishing cuts, internal threading, safety
	precautions etc.
	Job: preparing a job on lathe machine performing the above operations
2	Machine shop: study of different operations to be carried on the milling machine, the
	use indexing, gear cutting, slot cutting, spline cutting, and safety precautions etc
	Job: preparing at least one job involving indexing operations, spur gear cutting
3	Welding Shop: Different welding machines and equipments, types of welding and
	welded joints, used in fabrication, preparation for weld joints, joint finishing, different
	tools, types of electrodes, angle cutters, portable grinder, drills, safety precautions etc.
	Job: Preparing a job individually or in a group of students of any useful item of daily
	use using various welding operations.
4	Forging and Black smithy shop: Study of different forging operations, hand forging,
	power forging, heating devices, forging temperatures, different forging tools, safety
	precautions etc.
	Job: preparing a useful job involving upsetting, elongation, bending, tapering, and
	changing cross sections, job to be done by hand forging performing the above operations

Term Work

The term work will consist of submitting a file for all the shops with neatly written records of the study and diagrams. A workshop diary should be maintained by the students to record the progress of the jobs done.

The term work will be assessed by the course coordinator

Practical Examination

The Practical Examination will comprise of two jobs in any two shops. The jobs should involve all the operations studied during the semester. Duration will be three hours for each job. The jobs will be assessed by two examiners, one will be the course coordinator and other will be examiner appointed by DSB.

Mapping of Course outcome with Program Outcomes

Course	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO
Outcome	1									0	1	2	1	2
CO1	1	2	2		3								2	

1 – High 2 – Medium 3 - Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2009 : ELECTRICAL MACHINES							
Teaching Scheme	Examination Scheme						
Lectures: 2 Hrs/Week	Class Test I : 10 Marks						
Credit : 2	Class Test II :10 Marks						
	Teachers Assessment : 05 Marks						
	End Semester Exam : 25 Marks						

Prerequisites: Nil

Course description: After completing this course, students will have a broad and fundamental understanding of the concepts of electrical machines. Students will be able to find the applications of different electrical machines in mechanical industries

Course Objectives:

To understand fundamental concepts and principles of electrical machines. This course aims to provide basic knowledge and to develop practical skills to solve engineering problems of all electrically operated machines

Course Outcome

After completing the course, students will able to:

CO1	Understand basic concepts of DC and AC machines
CO2	Apply theoretical concepts to the applications of AC and DC machines

Unit 1	a) Electromagnetic Induction: Faraday's laws, statically and dynamically induced emf, self and mutual inductance, coefficients of coupling, dot convention, inductance in series and parallel.
	b) Electric Wiring installations: Types of insulated wires & wiring systems, concept of fuses, MCBs, ELCBs, etc. in wiring installations, concept of earthing, energy bill calculations, study of different lamps
Unit 2	a) DC Generator Constructional features, basic principle of working, EMF equation, type of DC generators, applications of different types of generators
	b) DC Motor Principle, Significance of back EMF, torque & speed equation and characteristics, separately & self excited motors, speed control, applications of motors

Unit 3	a) Induction Motor
	Construction of 3-phase squirrel cage and phase wound rotor, Operation, types,
	production of rotating magnetic fields, principle of operation, torque equation under starting & running condition, condition for maximum torque, torque – slip characteristics, applications of induction motor, star and delta connections and their comparison
	b) Single Phase Induction Motors
	Principle of operation, construction, types and application, types of single phase
	induction motors
Unit 4	Alternators and Synchronous Machines
	Alternators: Principle of operation, construction, types, EMF equation, applications of types of alternators, Synchronous machines – principle of operation, applications
Unit 5	Special purpose motors
	Construction, basic principle of working, applications of servomotor, permanent magnet
	DC Motor, Stepper motor.

Text and Reference Books

- 1. Fitzgerald A. E., Kingsley C & Umans S. D., "Electric Machinery", Tata McGraw Hill, New Delhi,2010
- 2. Clayton A.E. & Nancock N. N, "The performance & Design of DC Machines" CBC Publications & Distributors, Delhi,2014
- 3. Nagrath I. J., Kothari D. P., 'Electric Machines', Tata McGraw-Hill, New Delhi, 2015
- 4. Ashfaq Husain, 'Electrical Machines', 2nd Edition Dhanpat Rai & Co, 2007.

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO1	PSO	PSO
Outcome										0	1	2	I	2
CO1	1	2											2	
CO2	1	2	3										2	

1 – High 2 – Medium 3 - Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2010 : MECHANISMS OF MACHINES							
Teaching Scheme	Examination Scheme						
Lectures: 2 Hrs/Week	Class Test I	: 15 Marks					
Tutorial: 1 Hr/Week	Class Test II	: 15 Marks					
Credits: 3	Teachers' Assessment	: 10Marks					
	End -Semester Exam	: 60 Marks					

Pre-requisites: MA1001: Engineering Mathematics I, ME1001: BME, MA1002: Engineering Mathematics II.

Course Description:

The course is aimed at giving the fundamentals and application of kinematics in the analysis and synthesis of linkages, cams and gear trains. The design process is introduced and used to solve unstructured design problems in linkage, cam design and gear trains. Algebraic and graphical techniques to analyze the displacement, velocity and acceleration of linkages and cams are developed. Design considerations in mechanism synthesis.

Course Objectives:

- Develop concepts of kinematic, kinematics links and its applications in various mechanisms use in practice and knowledge of different relative motions of machine components
- Understand and develop concept of relative and instantaneous velocity, develop mathematical ability of solving practical problem with selecting appropriate method for analysis
- Understand concept of radial and tangential acceleration and its analysis
- Recognize the use of various cam mechanisms, motions and accelerations, identify, formulate and solve problems based on cam
- Understand the terminology of gears and its concepts, identify, formulate and solve problems based for various parameters of gears

CO1	Understand the fundamental concepts of kinematic, kinematics links and its applications in various mechanisms used in practice.
CO2	Apply the knowledge of velocity and acceleration analysis to formulate, analyze and solve practical problem.
CO3	Understand the cam mechanism, its motions and accelerations and develop analytical ability to solve engineering problems related to use of cam mechanism.
CO4	Apply knowledge of gears, gearing action in practice for developing the gear train and profile.

Course outcomes: At the end of the course, the student will be able to:

Detailed Syllabus:

Detune	u Synabus.
Unit	Kinematics: Science of Mechanics, Kinematic links, Kinematic pairs, classification of
1	pairs, Kinematic chains, planar, spherical, and spatial mechanisms, mobility, kutzbach
	criteria, Grubler criteria, problems based on above criteria, classification of mechanism,
	straight line generators, inversion of basic kinematic chain, Grashof's law.
Unit	Velocity Analysis: Arnold Kennedy's theorem, method of determining linear velocity of
2	a point on a link, angular velocity of a link: link to link method, line of centers method.
	Linear and angular velocities using Relative velocity method, rubbing velocity at a pin joint.
Unit	Acceleration Analysis: Centripetal or radial acceleration, tangential acceleration, total
3	acceleration of a point on link, method to obtain acceleration polygon for a mechanism,
	angular acceleration of link, acceleration of intermediate and offset points, slider crank
	mechanism, Coriolis acceleration component, crank and slotted lever mechanism
	Short cut methods for kinematic analysis of mechanism: Klein's construction,
	Ritterhaus's construction, Bennett's construction modified Kleins construction for four
	bar mechanism.
Unit	Cams: Classification of cams and follower, terminology, Analysis of follower motion:
4	constant/uniform velocity, SHM, constant/uniform acceleration &
	deceleration/retardation, cycloidal, polynomial motion, & derivation, graphical synthesis
	of plate cams using knife edge, roller follower, radial / off-set follower, translating /
	oscillating motion of follower, determination of velocity & acceleration for these motion.
Unit	Gears: Gear terminology, types, field of application, Spur gear: condition for correct
5	gearing, conjugate profiles, cycloidal, Involute, interference and undercutting, methods of
	eliminating interference, determination of length of path of path of contact, length of path
	and arc of approach and recess
	Spiral gear: spiral angles, normal pitch, and center-to-center distance, efficiency of power
	transmission, force analysis
	Helical and Herringbone gears, their relative merits and demerits over spur gear.

Reference Books

- 1. Shigley J. E. and Uicker J. J., "Theory of Machines and Mechanisms", 3rd Edition, McGraw Hill Intl,2010
- 2. Hartenberg and Denavit, "Kinematic Synthesis of Linkages", McGraw Hill International, 1964
- 3. Rao J. S. & Dukkipati R. V., "Mechanism and Machine Theory", 2nd Edition, New Age Intl. Publishers, 2012.
- 4. Ratan S. S., "Theory of Machines", 2nd Edition, Tata McGraw Hill Publishing Company Ltd, 2005.
- 5. Sharma C. S. and P. Kamlesh, "Theory of Mechanisms and Machines", Printice Hallof India Pvt. Ltd, 2006.
- 6. Waldron K. J., and Kinzel G. L., "Kinematics, Dynamics, and Design of Machinery", John Wiley & Sons, Inc, 2003.
- 7. Myszka D. H., "Machines & Mechanisms: Applied Kinematic Analysis", 2nd Edition, Pearson Education, 2012.

FF	9				- 0									
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outco														
m														
E														
CO1	1	2				3							1	
CO2	1	2	3	3		2							2	
CO3	2	3	2	3		3							1	
CO4	1	3	2	3		1								
CO5	1	3	2	3		1							2	

Mapping of Course outcome with Program Outcomes

1 – High 2 – Medium 3 – Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2011: APPLIED THERMODYNAMICS							
Teaching Scheme	Examination Scheme						
Lectures: 3 Hrs/Week	Class Test-I : 15 Marks						
Credits: 3	Class Test – II : 15 Marks						
	Teachers Assessment : 10 Marks						
	End Semester Exam : 60 Marks						

Prerequisites: ME 2001: Engineering Thermodynamics

Course description: This course consists of understanding the working and analyzing the performance of reciprocating compressors. Basic understanding of internal combustion engines, various systems in IC engines is included in this course. Analysis of vapour power cycles is covered in this course. Also this course includes theoretical understanding of vapour compression refrigeration, non-conventional refrigeration systems, need and working of various types of condensers and cooling towers.

Course Objectives:

- To understand and analyze performance of air compressor
- Get familiar with the various systems of IC engines
- To study the VCR and non conventional refrigeration systems
- To understand and analyze vapour power cycles
- To study various types and function of condensers and cooling towers

Course Outcome

After completing the course, students will able to:

CO1	Understand working and analyze the performance of air compressor
CO2	Differentiate among different internal combustion engine designs and give an engine
	design specification
CO3	Identify various parts of refrigeration system and describe their functions.
CO4	Analyze the performance of vapour power cycles
CO5	Select condenser and cooling tower for particular application

Unit1	 Gas Compressors A) Classifications and working principles, Reciprocating compressors. Terminologies used, effect of clearance volume, actual indicated diagram, multistage compression, two stage compressors (Numerical problems on reciprocating compressors) B) Rotary compressors, working principles, Roots blower, Vane type blower, Centrifugal compressor, axial flow compressor, Comparison between reciprocating and rotary
	compressors, air motor (Descriptive treatment only).
Unit2	I.C. Engines
	Classifications, components, working of 2-Stroke, 4-Stroke, Spark Ignition and Compression

	ignition engines, necessity of cooling of I.C. engines and their types Flow Through Nozzles: Velocity and heat drop, mass discharge through a nozzle, critical pressure ratio and its significance, effect of friction and nozzle efficiency, supersaturated
	flow.
Unit3	Refrigeration and Air Conditioning
	Fundamentals of refrigeration systems, COP, unit of refrigeration, Heat Pump, Vortex tube
	refrigeration, Non conventional refrigeration systems-Vapour absorption refrigeration
	system, thermoelectric refrigeration system, Steam jet refrigeration system etc., Introduction
	to Air conditioning.
Unit4	Vapour Power Cycles
	Carnot cycle using steam, ideal Rankine cycle, modified Rankine cycle, Reheat and
	Regenerative cycles with bleeding of steam, thermal efficiency, specific steam consumption,
	work ratio, power output, effect of superheat, inlet pressure and back pressure on
	performance of Rankine cycle (Numerical Treatment)
Unit5	Steam Condensers
	Classifications, comparison between Jet and Surface condensers, vacuum efficiency, vacuum
	measurement, mass of circulating water required in a condenser, air removal, capacity of air
	extraction pumps, introduction to cooling towers

Text and Reference Books

- 1. Rajput R.K., "A Text Book of Engineering Thermodynamics", Laxmi Publication, New Delhi, 2014.
- 2. Eastop T D, McConkey A, "Applied Thermodynamics", Pearson education, New Delhi
- 3. V Ganeshan, "Internal Combustion Engines", 4th Edition McGraw Hill Education IndiaPvt Ltd, 2012.
- 4. Rajadurai J S, "Thermodynamics and Thermal Engineering", New Age Publishers, N. Delhi, 2010.
- 5. Domkundwar & Domkundwar, "Introduction to Thermal Power Engineering", Dhanpatrai and Sons, New Delhi, 2014.
- 6. Granet, Bluestein, "Thermodynamics and Heat Power", Pearson education, New Delhi, 2010. Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcome														
CO1	1		1		1	3	1		3				1	
CO2		3			1	2							1	
CO3	3	2	1		1	2							2	
CO4	1	1			1	3	1		3					
CO5	2			3		2			3				1	

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

1 – High 2 – Medium 3 - Low

ME 2012: STRENGTH OF MATERIALS						
Teaching Scheme	Examination Scheme					
Lectures: 2 Hrs/Week	Class Test-I : 10 Marks					
Credits: 2	Class Test – II : 10 Marks					
	Teachers Assessment : 05 Marks					
	End Semester Exam : 25Marks					

Course Objectives:

- To know the behaviour of material at various in compression and tension
- Understand and analyze shear force and bending moment in various loading conditions
- To know the phenomenon of bending of different sections and its analysis and recognize principle stresses
- To understands various columns sections and geometrical analysis
- Concepts of strain energy, torsion and numerical analysis

Course Outcomes: After the completion of the course, the student will be able to:

CO1	Apply concepts of stress and strain to solve problems.
CO2	Compute Shear Force and Bending Moment for determinate beams and draw Shear Force and Bending Moment Diagrams for various loading conditions.
CO3	Apply the knowledge of bending and shear concept to determine various stresses and draw stress diagrams.
CO4	Explain theory of column failure with different support conditions, and develop numerical ability to solve numerical problems.
CO5	Apply knowledge of strain energy, torsion and thin cylinders and spherical shells to solve numerical problems

Unit – 1	Simple Stresses and Strains						
	Elasticity, Stress, Strain, Hook's Law, Young's Modulus, numerical on stresses						
	in bar of varying sections and composite bars, numerical on statically indeterminate						
	problems, elastic constants, bulk modulus, shear modulus and their relations and						
	numerical.						
Unit – II	Shear Force and Bending Moment						
	Definition of shear force and bending moment, relation between SF, BM and						
	intensity of loading, numerical on statically determinate beams (simply supported,						
	cantilever, overhanging).						
Unit – III	Stress in beams and Principal stresses and Strains						
	a) Stress in beams: Theory of simple bending, assumptions, neutral axis,						
	moment of resistance, section modulus, bending stress distribution diagram, numerical						
	on statically determinate beams of rectangular and I section beams, section consisting of						
	different materials, Shear stresses in beams						
	b) Principal stresses and Strains: Tangential and normal stresses, Principal						
	Planes, principal stresses, analytical and graphical methods to find stresses on an						
	oblique section, Mohr's Circle.						

Unit – IV	Columns & Struts							
	Euler's theory and Rankin's theory of column failure with different support							
	conditions, derivations, radius of gyration, slenderness ratio, factor of safety, numerical							
	on single and built up cross sections.							
Unit – V	Strain Energy, Theory of torsion							
	a) Strain Energy: Definition, resilience, Proof resilience, Modulus of resilience,							
	strain energy stored in the body due to gradually applied loads, suddenly applied loads							
	and impact loads, strain energy due to shear, bending							
	b) Theory of torsion: Theory of torsion, assumptions, torsional stresses and							
	strains numerical on solids hollow circular shafts, composite shafts and varying							
	sections.							

Reference Books:

- 1. S. Ramamrutham, Dhanpat Rai and sons, "Strength of Material", Dhanpat Rai Publishing Company (p) Ltd (2011).
- 2. Paytal and Singer, "Strength of Material", Harper Collins publications, 1987.
- 3. Ferdinand P. Beer and E. Russell Johnston "Mechanics of Materials" ,7th edition , McGraw Hill, New Delhi Publication,2014.
- 4. James M. Gere and Stephen P. Timoshenko, "Mechanics Materials", CBS Publishers & Distributors, New Delhi, 2010.

Mapping of Course outcome with Program Outcomes

Course	PO	PO1	PO1	PSO	PSO									
Outcome	1	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1		1	1	1		1								
CO2		1	2	2		2							2	
CO3		2	1	1		1							1	
CO4		1	2	1		2								
CO5		2	1	2		1							3	

1 – High 2 – Medium 3 - Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2013 : MACHINE TOOLS						
Teaching Scheme	Examination Scheme					
Lectures: 3 Hrs/Week	Class Test I	: 15 Marks				
Credits: 3	Class Test II	: 15 Marks				
	Teachers' Assessment	: 10Marks				
	End -Semester Exam	: 60 Marks				

Prerequisites: ME 144 Basics of Mechanical Engineering

Course description: After completing this course, students will have a broad and fundamental understanding of the concepts of terminology and geometry of tools and various operations on lathe, various milling operations, drilling, boring and broaching operations, grinding machines and process, non traditional machining processes.

Course Objectives:

- To understand terminology and geometry of tools and various operations on lathe
- To understand various milling operations
- To understand operations carried out on drilling, boring and broaching machines
- To understand operations carried out on grinding machines
- To understand various non traditional machining processes

Course Outcome

After completing the course, students will able to:

CO1	Select the correct tool for the particular machining operation on lathe.
CO2	Acquire the knowledge of indexing on milling machine for gear cutting.
CO3	Acquire practical knowledge of drilling, boring ,broaching and grinding operations.
CO4	Compare and select suitable Non-Traditional Machining process for particular application.

Unit	Metal Cutting and Cutting Tools & Lathe
1	Introduction, types of cutting tools, orthogonal and oblique cutting, types of chips, chip
	breakers, cutting tool nomenclature, cutting action of hand tools, cutting feed and speed,
	friction and heat sources in cutting, tools life and wear, machinability, cutting tool materials,
	cutting fluids, economics of machining.
	Lathe- Turning on lathes, traditional lathes, capstan and turret lathes, automatic lathes
Unit	Milling Machine
2	Types of milling machines, milling cutters, indexing and dividing heads, indexing methods,
	calculations of indexing, multi-axis milling, Gear cutting methods, gear hobbing.
Unit	Drilling, Boring and Broaching machines
3	Drilling- Introduction, types of drill, twist drill nomenclature, types of drilling machines,
	work holding devices, tool holding devices, drilling machine operation, speed, feed and
	machine time, Boring- Introduction, classification of boring machines, boring bars, boring
	heads, boring defects, Broaching- Introduction, principle parts of broach, broaching

	machines, application of broach, advantages of broaches, limitations of broaches and broaching tools
Unit	Grinding Machines
4	Introduction, grinding wheels, manufacturing of artificial abrasives, bonds and bonding processes, grit, grade and structure of grinding wheels, types of wheels, method of specifying grinding wheel, selection of grinding wheels, dressing and truing of grinding wheels, types of grinding machines
Unit	Non Traditional Machining
5	Introduction, classification of machining processes, abrasive jet machining (AJM), ultra sonic machining (USM), Chemical machining (CHM), electrochemical machining (ECM), Electrochemical grinding (ECG), electro discharge machining (EDM), electron beam machining (EBM), laser beam machining (LBM), plasma arc machining (PAM), ion beam machining

Text and Reference Books

- 1. H. Gerling, "All about Machine Tools", Wiley Eastern, 2nd edition, 2006.
- 2. Krar S. F., "Technology of Machine Tools", Mc Graw Hill, 7th edition, 2011.
- 3. G. Boothroyd, "Fundamentals of Metal Machining and Machine Tools", CRC press, 3rd edition, 2005.
- 4. Raghuvanshi B.S., "Workshop Technology", Vol. I, Dhanpat Rai & Co., New Delhi, 1991.
- 5. Hazra Choudhary, "Elements of Workshop Technology", Vol. I, Dhanpat Rai Pub., New Delhi, 1994
- 6. Jain R.K., "Production Technology", Khanna Publications, 17th edition New Delhi, 2014.
- 7. Bawa H.S., "Workshop Technology", Vol. I, Mc Graw Education, New Delhi, 1998.

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcome														
CO1		2	3	1	2								3	
CO2		3	2	1	3								3	
CO3	3			1									3	
CO4	3		3	1	2								3	

1 – High 2 – Medium 3 – Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2014 : MATERIAL HANDLING				
Teaching Scheme	Examination Scheme			
Lectures: 3 Hrs/Week	Class Test I	: 15 Marks		
Credits: 3	Class Test II	: 15 Marks		
	Teachers' Assessment	: 10Marks		
	End -Semester Exam	: 60 Marks		

Course description: After completing this course, students will have a broad and fundamental understanding of the concepts of material handling system. Students will have knowledge of different material handling equipments. Students will be able to evaluate different engineering and economic factors. Students will be able to understand selection criteria for material handling equipments. Students will understand functioning of trucks, trolleys, tractors, conveyor belts etc.

Course Objectives:

- To provide the knowledge of different types of material handling equipment according to types of layout.
- To provide the knowledge of material handling trucks and its arrangements.
- To provide the knowledge of different types of conveyors and its arrangement.
- To provide the knowledge of online material handling equipment like AGV, elevators etc.
- To provide the knowledge of different types of material handling cranes, robots and material stocking methods and dispatch.

Course Outcome

After completing the course, students will able to:

CO1	Understand basic concept of material handling and equipment.
CO2	Select material handling equipments for restricted and unrestricted areas.
CO3	Explain working and utilization of trolley, tractor, AGVs, elevators jibs, cranes and industrial robots.

Detailed Syllabus:

Unit 1	Materials handling: General introduction, definition of terms i.e. batched goods, charged
	pallet ratio, general cargo, handling, integrated transport, line load etc. Engineering and
	economic factors, relationship to plant layout; Selection of material handling equipment;
	Types of equipments and their maintenance
Unit 2	Unrestricted Equipment: General information, counterbalancing of trucks, powered
Unit 2	Unrestricted Equipment: General information, counterbalancing of trucks, powered stokers, order pickers, side loader and forwarding trucks, straddle carriers and mobile lifting
Unit 2	

Unit 3	Area restricted: General information on line restricted material handling equipment;
	Different type of conveyers like roller, wheel, belt, slat, chain, overhead rail etc
Unit 4	Rail mounted trolleys, trolley and tractors, automatically guided vehicles, lift, elevators,
	other equipment, sorting installations
Unit 5	Position restricted: Jib cranes and other fixed industrial robots. Auxiliary equipment: Load
	carriers (Pallets, Stillage etc.) warehouse layouts, goods reception and dispatch equipment,
	equipment for assembling and securing loads.

Text and Reference Books

Text Books

- 1. James M Apple, "Material Handling System Design", Ronald Press Co, 1972.
- 2. John M. Hill, "Industrial Engineering", Mc Graw Hill publications, 2010.

Reference Books

- James Tomkins & John, "Facilities Planning" John wiely and sons, 4th edition, New York, 2010.
- 2. G. Saliendy, "Hand Book of Industrial Engineering" John Wiely and sons, New York, 2014.

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcome														
CO1	1		3										2	
CO2		1	2	3									3	
CO3	1	2	3											
CO4		1	2										2	

1 – High 2 – Medium 3 – Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2015: SURFACE COATING				
Teaching Scheme	Examination Scheme			
Lectures: 3 Hrs/Week	Class Test I	: 15 Marks		
Credits: 3	Class Test II	: 15 Marks		
	Teachers' Assessment	: 10Marks		
	End -Semester Exam	: 60 Marks		

Prerequisite: Engineering chemistry

Course Description: After completing this course, students will have a broad and fundamental understanding of Surface Coating principles. The students will understand the impact of nanotechnology based coating and its application in the industries.

Course Objective:

- To give an overview of the process of surface coatings, their classification, applications, operation and processes.
- To give complete knowledge of type of special coating techniques and their mechanism
- To understand the performance of hard and soft coatings and their processes
- To understand the surface coating depositions and their preservation (for long life)
- To understand the comparative assessment of surface coatings.

Course Outcome:

After learning the course the students should be able to:

CO1	Explain the concept of surface coating.
CO2	Select suitable surface coating technique for particular application.
CO3	Able to assess various properties of surface coating.

Detailed Syllabus:-

Unit 1	Concept of Coating
	Introduction to surface Engineering, Differences between surface and bulk, Properties of
	surfaces-wear, wet ability
Unit 2	Special Coating Technique
	Electroplating and electroplating, Metallic and non-metallic coatings, Galvanizing,
	advantages and disadvantages - conventional verses nano coatings
Unit 3	Hard and Soft Coatings
	Caser cladding, laser alloying, Electron beam hardening, ion beam implantation,
	electrophoretic deposition, DLC and diamond coatings, antifriction and antiscratch coatings
Unit 4	Surface Coating
	Conductive Coatings, Sol-Gel Coatings, Radiation-Cured Coatings, Metal Coating
Unit 5	Characterization Technique and Application of Nanocoating
	Physical Characterization, Assessment of Coating Hardness, Assessment of Friction and
	Wear of Coating, Assessment of Surface Roughness and Thickness of Coating, Assessment
	of Adhesion of Coating

Reference Books:-

- Nanostructured Coatings, Nanostructure Science and Technology by Albano Cavaleiro, Edited by Jeff T. de Hosson, Publisher Springer-Verlag New York Inc, 2010.
- 2. Nanocoatings: Principles and Practice: by Steven Abbott Nigel Holmes, Publisher DEStech Publications, Inc Lancaster, United States, 2013.
- 3. Coatings Materials and Surface Coatings, by Arthur A. Tracton, Publisher: CRC Press Taylor and Francis Group, 2010.
- 4. Crystallography and Surface Structure an Introduction for Surface Scientists and Nonscientists by Klaus Hermann Publisher: Wiley VCH, 2010.
- 5. Smart Coatings, by: Theodore Provder, Jamil Baghdachi Publisher ACS Symposium, 2014.

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcome														
CO1				3									2	
CO2	3				2		2		2				3	
CO3		2				3								

1 – High 2 – Medium 3 – Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2022 : TOTAL QUALITY MANAGEMENT					
Teaching Scheme	Examination Scheme				
Lectures: 3 Hrs/Week	Class Test I	: 15 Marks			
Credits: 3	Class Test II	: 15 Marks			
	Teachers' Assessment	: 10Marks			
	End -Semester Exam	: 60 Marks			

Course description: After completing this course, students will have a broad and fundamental understanding of Quality. Students will have knowledge of different definitions of quality. Students will understand different quality control tools. Students will be able to understand concepts quality circles, kaizen, 5s etc. Students will understand and acquire knowledge of different ISO standardization series Students will be able to understand concepts of Just In Time (JIT) and Business Process Reengineering(BPR).

Course Objectives:

- To know the basics and philosophies of TQM
- To illustrate the use of total quality control tools
- To understand the concepts quality circles and kaizen
- To understand the techniques of JIT
- Concepts of re-engineering, BPR

Course Outcome

After completing the course, students will able to:

CO1	Explain concept and philosophy of Total Quality Management
CO2	Select and apply suitable quality control tools.
CO3	Implement concept of quality circle, Kaizen and JIT in organization.

Detailed Syllabus:

Unit	TQM Premises
1	Concept of Quality, Different definitions of Quality by various thinkers, Concept of Brand,
	Different Parameters for ascertaining quality, Dimensions of product and service in quality,
	Customer orientation, continuous improvement, Cost of Quality, Productivity and flexibility,
	approaches and philosophies of TQM,
Unit	Tools of TQM
2	Basic Analytical tools-check sheets, Histograms, Pareto charts, Cause and Effect diagrams,
	flow charts, scatter diagrams, run charts, Cost of Quality; Quality cost measurement,
	Reliability and failure analysis
Unit	Quality Circles
3	Introduction, implementation, formation, intangible impact of quality circle, inhibiting
	factors, Kaizen: Introduction, the Japanese style of management & Kaizen implementation,

	modeling kaizen process and benefit
Unit	Just in Time concept and TQM
4	Introduction and Concept of JIT, Relevance & advantages, approach to quality, importance of
	KANBAN in JIT, Introduction to ISO series of Quality Standard, Certification Requirements,
	Evolving Standards
Unit	Latest Trends
5	Concept of six sigma, and Japanese 5S principle, Implementation in manufacturing and
	service sector, Leadership issues, Quality, vision mission and policy statements
Text	and Reference Books
1.	Deming W. Edward, 'Out of crisis', MIT publishing, 1982.
2.	Ishikawa & Lu, 'What is Total Quality Control? The Japanese way', Prentice Hall, 1988
3.	Tally D. J., 'Total Quality Management', ASQC Quality Press A. V. Feigenbaum, 'Total
	Quality Control', McGraw Hill International, 6th Editions, USA,2009.
4.	Juran J. M., 'Quality Control Handbook', McGraw Hill Book Company 5th edition, USA,
	2009.
5.	Masaaki Imai, 'Kaizen: The key to Japan's Competitive Success', McGraw Hill International
	Editions, and USA, 1986.
6.	Implementing Juran's Road Map for Quality Leadership: Benchmarks and Results by Al
	Endres, Wiley, 2000.

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcome														
CO1				3									2	
CO2	3				2		2		2				1	
CO3		2				3							3	
CO4					3								1	
CO 5		3												

1 – High 2 – Medium 3 – Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

AC 2004 : Lab -PROFESSIONAL COMMUNICATION

Teaching Scheme: Practicals: 2hr/week Credits: Nil

Course Objectives

After completion of course, student will be able to

- To Increase their knowledge and skill in composing various types of business communication and their confidence in Professional writing.
- To Analyze and adapt to the constraints of specific rhetorical situations, including audiences, purposes, and uses.
- To Develop strategies for addressing multiple audiences in any given document, including accommodations for expert and lay audiences
- To Structure sentences, paragraphs, and documents for maximum impact
- To demonstrate document design skills and integrate graphics into document production.
- To refine writing style for clarity, concision, coherence, cohesion, and emphasis.
- To Critique and revise your own documents to ensure they fulfill their purposes.

Detailed Syllabus:

Tutorial 1	Communicating in Business Environments and Rhetorical Considerations Lesson Business Communication at Work Place ,Memorandum ,Meeting Brochure					
Tutorial	Writing Reports ,Writing Resumes and Cover Letters Lesson, Preparing Progress					
2	Reports Lesson					
Tutorial	Summaries and Abstracts, Technical Definitions					
3						
Tutorial	Audio Video Aids and Effective Presentation					
4						
Tutorial	Mechanics of Writing					
5	Transitions, Spelling Rules, Hyphenation, Transcribing Numbers, Abbreviating					
	Technical and Non Technical Terms, Proof Reading					

Reference Books

1."Business Communication" By Urmila Rai & S. M. Rai, Himalayan Books, 2009.

- 2."Communication Skills" By Leena Sen, PHI Learning Pvt. Ltd., 2007.
- 3."Technical communication" By William Sanborn, Pearson publications.8th edition, 2012.
- 4. "Presentation Skills for Managers", McGraw Hills brief case books, 2nd edition, 2016.

5. Professional Communication Skill, Pravil S.R. Bhatia, S.Bhatia, 2001.

6. Technical Report Writing Today: Daniel G. Riordan, Steven E. Pauley, Houghton Mifflin College Div; 7th edition, 1999.

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2016 : Lab - ELECTRICAL MACHINES **Teaching Scheme Examination Scheme Term Work Practical: 2 Hrs/Week** : 25 Marks **Practical** : 25 Marks Credit: 1

Course Objective: Acquiring practical knowledge of electrical machines

Course Outcome: Hands on experience of various electrical machines

As an outcome of completing the Laboratory course, students will able to:

CO1	Conduct tests on electrical machines.
CO2	Control the speed of electrical motors
CO3	Select the electrical motors for specific applications.

List of Experiments (Any Eight)

Sr. No.	Details
1	Speed Control of DC Shunt Motor
2	Magnetization Characteristics of DC Generator
3	Load Characteristics of DC Generator
4	Load Test on 3-phase Induction Motor
5	Determination of regulation of 3-phase alternator by synchronous Impedance method and
	MMF method
6	Determination of regulation of 3-phase alternator by direct loading
7	Plotting of V and inverted V curves of synchronous motor
8	Study of alternator in different power station
9	Effect of variation of applied voltage on performance of IM and torque slip characteristics
10	Load test on three phase induction motor
11	Circle diagram & determination of various parameters of equivalent circuit of 3-phase IM
12	Determination of equivalent circuit parameters of single phase induction motor
13	Study of Stepper Motor
14	Study of Servomotor
15	Study of permanent magnet DC motor
16	Study and report submission by industrial visit to power stations.

Mapping of Course outcome with Program Outcomes

			aveoni	• •• ••				5						
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcome														
CO1	1		3										3	
CO2	1	2	3	2		2							3	
CO3	1	1	3	2		2							3	
	-		-											

1 – High 2 – Medium 3 - Low

Head of The Department **Mechanical Engineering**

Govt. Engg. College A'bad

ME 2017 : Lab – MECHANISMS OF MACHINES					
Teaching Scheme	Examination Scheme				
Practical: 2 Hrs/Week	Term Work	: 25 Marks			
Credit: 1	Practical Examination	& Viva Voce :25 Marks			

Course Objective: To understand the practical application of various principles of kinematics of machines

Course Outcome

As an outcome of completing the Laboratory course, students will able to:

CO1	Develop conceptual knowledge and appropriate application about mechanisms
CO2	Draw velocity and acceleration analysis diagrams
CO3	Draw cam profiles
CO4	Generate gear tooth profiles

List of Experiments

Sr. No.	Details
1	Demonstration of Kinematics of Mechanisms and Machines
2	Demonstration of Lower Pair Mechanism, such as Straight line generators, Pantograph, Steering Mechanism, Hooks joint
3	Draw sheets based on Velocity analysis problems (Three or four Problems)
4	Draw sheets based on Acceleration analysis (Three or four Problems)
5	Draw sheets based on Kinematic analysis – Short cut methods (Three or four Problems)
6	Draw sheet based on Graphical synthesis of cams, theory, classification, application, terminology etc
7	Draw sheet to generate Involute tooth profile with the help of a rack on gear blank
8	Demonstration of interference and undercutting for gear

Mapping of Course outcome with Program Outcomes

Course		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcome														
CO1	1		3										1	
CO2	1	2	3	2		2							1	
CO3	1	1	3	2		2							2	
CO4	1	1	3	2		2							2	

1 – High 2 – Medium 3 - Low

Head of The Department

Mechanical Engineering Govt. Engg. College A'bad

ME 2018 : Lab-APPLIED THERMODYNAMICS

Teaching Scheme	Examination Scheme	
Practical: 2 Hrs/Week	Term Work	: 25 Marks
Credit: 1	Practical Examination & Viva Voce	:25 Marks

Course Outcome

As an outcome of completing the Laboratory course, students will be able to:

CO1	Hands on experience with reciprocating compressor and its performance analysis.
CO2	Hands on experience with centrifugal blower and its efficiency calculation
CO3	Understand about working of various IC engine systems, refrigerator and cooling tower
CO4	Communicate effectively by preparing laboratory report

List of Experiments:

Sr. No.	Details
1	Trial on two stage Reciprocating air Compressors
2	Determination of efficiency of blower.
3	Drawing up heat balance sheet for Internal combustion engine
4	Performance Evaluation of Vapour Compression Refrigeration system
5	Study of domestic refrigerator.
6	Study of surface condenser.
7	Study of cooling towers
8	Visit to industry related to applied thermal systems

Term work

The term work will consist of submitting a file for all the experiments with neatly written records of the study and diagrams.

The term work will be assessed by the course coordinator

Practical Examination

The Practical Examination will comprise of performing the experiment and viva voce on the syllabus. The practical will be assessed by two examiners, one will be the course coordinator and other will be examiner appointed by DSB.

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcome														
CO1	2		1		1	3		1					1	
CO2	2		1		1	3		1						
CO3	3			1		1	1						3	
CO4				1		3		1	2	1			1	

1 – High 2 – Medium 3 - Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2019: Lab – STRENGTH OF MATERIALS					
Teaching Scheme Examination Scheme					
Practical: 2 Hrs/Week	Term Work	: 25 Marks			
Credit: 1 Practical Examination & Viva Voce :25 Marks					

Course Outcome

After the completion of the course, the student will be able to

CO1	Interpret the test results
CO2	Test and measure the performance of material
CO3	Apply test knowledge to define and understand different material behavioural concept

List of Experiments (Any Six)

Sr. No.	Details							
1	Study of Universal Testing Machine and its attachments and Extensometer							
2	Tension test on mild steel and Tor Steel specimens							
3	Shear test on metals (Direct and punching)							
4	Flexural test on timber specimens							
5	Impact test on metals							
6	Hardness test on metals (Brinell and Rockwell)							
7	Torsion test on mild steel and Tor steel circular specimens							

Practical / Oral Examinations

Viva - voce based on the Term work, syllabus, and Assignment submitted.

Mapping of Course outcome with Program Outcomes

Outcome 9 0 1 2 1 CO1 1 1 2 2 2 2	1 PO1 PSO PSO	PO1	PO1	PO	PO8	PO7	PO6	PO5	PO4	PO3	PO2	PO1	Course
	2 1 2	1	0	9									Outcome
	2						2			1	1		CO1
	1						2		1		2		CO2
CO3 2 2 2 2	2						2		2				CO3

1 – High 2 – Medium 3 - Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME 2020: Lab- Computer Applications In Mechanical Engineering-I						
Teaching Scheme	Examination Scheme					
Practical: 2 Hrs/Week	Term Work	: 25 Marks				
Credit: 1 Practical Examination & Viva Voce :25 Marks						

Course Outcome

As an outcome of completing the Laboratory course, students will able to:

CO1	Acquire practical knowledge of 3D modeling software.
CO2	Create and edit 2D drawing in 3D modeling software.
CO3	Create 3D modeling, Visualize the parts of machine in part module.
CO4	Construct assemblies from the concepts learnt using 3D modeling software

List of Experiments

Sr. No.							Detai	ls						
1	Perfo	rm foll	owing	Practic	al on a	ny 3 D	model	ing Sof	tware j	olatform	1			
	Introduction													
	Strengths and weaknesses of conventional 2D drawing. Types of geometric modeling,													
	wire frame modeling, surface modeling, solid modeling													
2	Sketching													
		-			-					-		or a s	-	
		-		-		-		-				s, mod	• •	
		dimension. Constraints parallel, perpendicular, co-incident, vertical, horizontal, tangent,												
-	symmetric. Edit and modify sketches (Two assignment on sketching)													
3	Solid Modeling Sketch based features extrude, revolve, sweep, variable section sweep, loft. Add,													
								-				-		
	subtract, intersection. Use of part library threads, tapped holes, ribs, nuts, bolts etc. Datum planes, points, curves etc. parent child relationship. Modifying commands fillet,													
		-				-			-	•	0	nmands	fillet,	
4	chamfer, array, copy, mirror etc. (Two assignment on Solid Modeling)Assembly and drafting													
4		•		U				0 0 0 0 0			ian Iai	nta Da	a:1:m a	
		-	-								-	nts, Det	-	
	generating views, sectional views, Orthographic views, isometric Dimensioning views,													
	adding dimensional and geometric tolerances, surface finish. Creating BOM. (Two													
	assemblies of machine component like knuckle joint, coupling, gate valve, stop valve Banch vice, tool post and Detailing of any one assembly and parts made in assignment)													
Bench vice, tool post and Detailing of any one assembly and parts made in assignment) Mapping of Course outcome with Program Outcomes														
Course	PO1	PO2	PO3			1			PO9	PO10	PO11	PO12	PSO1	PSO2
Outcome		102	105	101	105	100	10/	100	107	1010	1011	1012	1501	1502
CO1	1	1	2				3	2					2	
CO2	1	2	2				-	_					2	
CO3	2	1	2										2	
000	-	-	-										_	

2

CO4 2 2 1 2 – Medium 3 – Low 1 – High

ME 2021 : WORKSHOP PRACTICE – IV

Teaching Scheme	Examination Scheme
Practical: 2 Hrs/Week	Term Work: 25 Marks
	Practical Examination & Viva Voce :25 Marks

Course Objectives: To acquire the hands on experience and skills for various operations like pattern making, moulding, sheet metal working and CNC Machining

Course Outcome

As an outcome of completing the Laboratory course, students will able to:

CO1	Enhancing the skills in operations like pattern making, moulding, sheet metal working and
	CNC Machining

List of Experiments

Sr. No.	Details
1	Pattern Making Shop: Study of pattern materials, types of patterns and cores,
	allowances, pattern making tools and allowances, safety precaution etc.
	Job: Preparing at least one pattern in wood, involving details like, allowances, core
	prints, parting line of multi piece patterns etc.
2	Foundry Shop: Sand moulding, types of sands, preparing sand for moulding,
	equipments, sand moulds (cope, drag, check etc.), safety precaution etc.
	Job: preparing sand moulds for single, multi-piece pattern in at least two or multi-
	piece moulding boxes and details like runners, risers, gates etc mould cavity finishing,
	demonstration of casting using ferrous of non-ferrous metal.
3	Sheet Metal Working Shop: Cutting operations (cut off, blanking, piercing etc) forming
	operations (blending, ribbing, corrugating etc) drawing operations, study of development
	of surfaces, safety precaution etc.
	Job: Preparing a job individually or in a group of students of any useful item of daily
	use using various sheet metals working operations. Jobs for development of surfaces like
	pipe bend, elbow U shape, ducts etc.
4	CNC Shop: Study of different operations to be carried out on the CNC lathe machine
	using tail Stock, taper turning methods (calculations), internal cutting tool operations,
	internal threading, Facing, finishing cuts, CNC milling, Non-conventional machining
	processes, safety precaution etc.
	Job: Preparing at least one job on CNC lathe machine / CNC milling machine with
	programming and different operations etc. Individually or in a group

Term Work

The term work will consist of submitting a file for all the shops with neatly/written records of the study and diagrams. A workshop diary should be maintained by the students to record the progress of the jobs done. The term work will be assessed by the course coordinator

Practical Examination

The Practical Examination will comprise of two jobs in any two shops. The jobs should involve all the operations studied during the semester. Duration will be three hours for each job.

The jobs will be assessed by two examiners, one will be the course coordinator and other will be examiner appointed by DSB

mapping.					10510	m ou								
Course	PO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
Outcome	1													
CO1	1	2	2		3								2	
1 11.1	•	3 4 11		<u>эт</u>										

Mapping of Course outcome with Program Outcomes

1 - High 2 - Medium 3 - Low

Head of The Department Mechanical Engineering Govt. Engg. College A'bad

ME2023 : Entrepreneurship Development Programme (Open Elective)							
	Examination Scheme						
Teaching Scheme	Class Test I : 15 Marks						
Lectures : 3 Hrs/Week	Class Test II : 15 Marks						
Tutorial : —	Teachers' Assessment : 10 Marks						

End -Semester Exam : 60 Marks

Pre-requisite: NIL

Total Credits : 3

Course Description:

This course is to create awareness about entrepreneurship among students. This course focuses on motivating students for entrepreneurship. The more focus is given on creativity and innovation.

Course Objectives:

The objectives of the course are to:

- 1. Introduce students about various qualities of successful entrepreneurship
- 2. Explain various entrepreneurship models
- 3. Organize interaction with successful entrepreneurs
- 4. Introduce students about various tools as Six hat techniques, Five S etc.

Course Outcomes:

After completing the course students will able to-

COl	Identify qualities of entrepreneurs
C02	Write project proposal
C03	Use various entrepreneurship models
C04	Understand various schemes supporting entrepreneurship
C05	Think creative and innovative

Detailed Syllabus:

UNIT-I	 Introduction to entrepreneurship Entrepreneur- definition , Characteristics of a successful entrepreneur , Qualities and skills required to be an entrepreneur Six Hat, 5 S technique, Principles of Management ,Types of entrepreneurs ,Social and Women Entrepreneurship , Functions of entrepreneur , Social and Environmental responsibilities of entrepreneur , Role of entrepreneur in nation building, society up liftmen, poverty alleviation and employment generation.
UNIT-II	Project report preparation Introduction ,Idea selection, Selection of product or service, Aspects and phases of project, Contents of Project report
UNIT-III	Introduction to various types of entrepreneurship Manufacturing sector, Service Sector, Freelancing, E commerce platform, Leadership and its types
UNIT-IV	Entrepreneurial Support Agencies Industrial Park, Special Economic Zones (SEZ), National Small Industries Cooperation (NSIC), The Small Industries Development Bank of India (SIDBI), Entrepreneurship Development Institute of India (EDII), Maharashtra Centre for Entrepreneurship Development (MCED)

UNIT-V	Marketing Management
	Introduction, Types of marketing, Product marketing, Marketing Research and Consumer Behavior,
	Sales management and promotion, Product pricing, Advertising and branding, Decision Making
	Compliances for business
	Introduction, Companies Act 2013 and Environment Act 1986, Types of companies Basic compliances
	, Company registration, GST registration, Udyam registration

Text Books:

- 1. Dr. Gupta and Dr. Srinivasan, Entrepreneurship development in India
- 2. V asant Desai, Dynamics of Entrepreneurial Development and Management
- 3 .Sarugadharan and Resia Begum, Women Entrepreneurship; institutional support and problems
- 4. M.W.Deshpande, Entrepreneurship of small Scale Industries
- 5. D.L. Saxon and RW Sniilor(eds), The Art and Science of Entrepreneurs

Reference Books:

- 1. Venkateshwara Rao and UdaiPareek,(Eds) Entrepreneurnship-A Handbook
- 2. RajaGopal, Agriculture Business and Entrepreneurship
- 3. H.Sadhak, industrial development in Backward Regions in India
- 4. Ravi J. Mathai, Rural Entrepreneurship A Frame Work in Development Entrepreneurship - A Handbook

1. Mapping of Course outcome with program outcomes

Corse outcome	POl	P02	P03	P04	P05	P06	P07	P08	P09	PO 10	PO 11	PO 12	PSO 1	PSO 1I	PSO III
Col						1	1	1	1	1	1				
C02						1	1		2	1					
C03						1	1	1	1	1	1				
C04								1	1				1	1	
C05								1	1	1				2	

1-High 2-Medium 3-Low

Teaching Strategies:

The teaching strategy is planed through the lectures, activities, expert lectures, and visit.

Teacher's Assessment: Teacher's Assessment of 10 marks is based on assignment given by faculty on case study writing and preparation of project proposal

Assessment Pattern

Assessment Pattern Level No.	Knowledge Level	Test I	Test II	Teachers Assessment/ Assignment	End Semester Exam
K1	Remember	05	05	00	10
K2	Understand	05	05	05	10
K3	Apply	03	03	05	20
K4	Analyze	02	02	00	20
K5	Evaluate	00	00	00	00
K6	Create	00	00	00	00
Total Marks	15	15	10	60	

Assessment table

Assessment Tool	K1	K2	K3	K4
	C01/CO4	C02	C03/CO4	CO3/CO5
Class Test (15 Marks)	05	05	03	02
Class Test (15 Marks)	05	05	03	02
Teachers Assessment (10 Marks)	00	05	05	00
ESE Assessment (60 Marks)	05	15	20	20

AC2005 SOCIAL INNOVATION

Teaching Scheme Practical: 2 Hrs/Week Total Credits : 00

Course description:

A theory of social change: Identifying the relevant theory and evidence for analysing a social problem. Social innovations and enterprises and their social impact: Key concepts, theories and evidence. Impacting social changes Vs. economic goals: How to design an innovative social enterprise that can achieve both. Design and plan a new social enterprise: Train, sharpen, and synthesize your insights in a team-based exercise by designing an actual new, innovative social enterprise with your fellow students **Course Objective:**

- This course intends to explain with appropriate examples the concepts of social innovation and social entrepreneurship from theoretical as well as practical perspectives.
- Given a situation, determine alternative approaches to effecting social change.
- Analyze the impact of social ventures in various parts of the world and discuss the opportunities, challenges, and tensions encountered by the respective entrepreneurs.
- Describe contemporary development challenges facing impoverished communities in developing countries.
- Identify stakeholders in social ventures and describe their needs, capabilities and resources.
- Develop business models and implementation strategies to realize social ventures that are technologically appropriate, environmentally benign, socially acceptable and economically sustainable.
- Determine appropriate assessment metrics and identify (or devise) simple instruments to measure social impact and Return on Investment (ROI) on social ventures.

Detailed syllabus:

Unit-I	Social innovation: an introduction:
	The growing importance of social innovation
	The Young Foundation: a centre of past and future social innovation
Unit-II	What social innovation is:
	Defining social innovation
	Fields for social innovation
	A short history of social innovation
	Social and economic change: the shape of the economy to come
Unit-III	Who does social innovation: individuals, movements and organisations
	The wider context: understanding social change.

Unit-IV	Stages of Innovation: Generating ideas by understanding needs and identifying potential solutions Developing, prototyping and piloting ideas Assessing then scaling up and diffusing the good ones Learning and evolving
Unit-V	Social organizations and enterprises: Social movements Politics and government Markets Academia Philanthropy Social software and open source methods