Electronics & Telecommunication Engineering Department

Curriculum: SE (E&TC)

	Program Educational Objective(s)
After gr	aduation and few years of graduation, the Electronics & Telecommunication Engineering
graduate	es would
PEO 1	Core Competency: Graduates will provide engineering solutions with strong base of science and
	mathematics, subject domain knowledge for challenging problems in Electronics and allied
	disciplines.
PEO 2	Career Building: Graduates will fulfill professional responsibilities effectively by synergizing
	theoretical and practical skills.
PEO 3	Technical Proficiency: Graduates will practice analytical, creative, innovative skills for higher
	education, research, industrial development.
PEO 4	Managerial Skills: Graduates will perform cohesively in group using moral, ethical practice,
	managerial, entrepreneurial skills for welfare of society with global outlook.

Electronics & Telecommunication Engineering Department

Electronics & Telecommunication Engineering Department

Programme Outcomes (PO's)

Programme Outcomes describe what students are expected to know or be able to do by the time of graduation from the programme. The POs for Under Graduate Course in Electronics and Telecommunication Engineering are able to

- 1. Apply knowledge of mathematics, science and technical fundamentals for solutions of domain problems
- 2. Identify, formulate, review the literature, analyze the complex engineering problems
- 3. Design and implement the systems' components and processes serving the needs of safety, environment and society
- 4. Perform experiment, analyze and interpret results
- 5. Use modern tools and technical skills necessary for electronic system development
- 6. Understand the impact of electronics in modern era
- 7. Explore the needs of society for sustainable development and human values
- 8. Understand professional, ethical and legal responsibilities
- 9. Work effectively in diverse and multidisciplinary tasks, to accomplish common goal
- 10. Communicate effectively
- 11. Engage in continuing educational / professional, entrepreneurship development
- 12. Apply electronics engineering and management principles / skills, as a member and leader in a team to solve social and industrial problems

Electronics & Telecommunication Engineering Department

Program	m Educational Objective(s)	Mapped Programme
		Outcomes
PEO 1	Core Competency: Graduates will provide engineering solutions with	1,2,3,4,5,6
	strong base of science and mathematics, subject domain knowledge for	
	challenging problems in Electronics and allied disciplines.	
PEO 2	Career Building: Graduates will fulfill professional responsibilities	6,7,8,9,10,11,12
	effectively by synergizing theoretical and practical skills.	
PEO 3	Technical Proficiency: Graduates will practice analytical, creative,	1,2,3,4,5,6,9,11
	innovative skills for higher education, research, industrial development.	
PEO 4	Managerial Skills: Graduates will perform cohesively in group using	7,8,9,10,11,12
	moral, ethical practice, managerial, entrepreneurial skills for welfare of	
	society with global outlook.	

Mapping of PEOs and POs

GOVERNMENT COLLEGE OF ENGINEERING, AURANGABAD (An Autonomous Institute of Government of Maharashtra) **Department of Electronics & Telecommunication Engineering** Teaching and Evaluation Scheme SE (Full-Time) in Electronics & Telecommunication Engineering **SEMESTER-I**

	THEORY	COURSES													
Sr.	Course		Programm e Outcomes	Scheme of Teaching (Hrs /Week)			Total	Scheme of Evaluation (Marks)							
No	Code	Subject		L	Т	Р	Credit s	TestI	Th TestI I	eory TA	ESE	Term Work	Practical / Viva- voce	Total	
1	MA2001	Engineering Mathematics- III	1,2,3,9,11	4	-	-	4	15	15	10	60	-	-	100	
2	HS2001	Environmental Studies		4	-	-	4	15	15	10	60	-	-	100	
	Any one fr	om ET2001/ ET2002													
3	ET2001	Electrical Fundamentals	1,2	2	-	-	2	10	-	10	30	-	-	50	
	ET2002	Programming Language	1,2,3,11	2	-	-	2	10	-	10	30	-	-	50	
4	ET2003	Electronics Devices & Circuits	2,3,4,5	3	-	-	3	15	15	10	60	-	-	100	
5	ET2005	Digital Electronics	1,2,3	3	-	-	3	15	15	10	60	-	-	100	
6	ET2007	Signals & Systems	1,2,11	3	-	-	3	15	15	10	60	-	-	100	
	LABORA'	FORY COURSES													
7	ET2004	Lab-Electronics Devices & Circuits	4,5	-	-	2	1	-	-	-	-	25	25	50	
8	ET2006	Lab- Digital Electronics	1,4,5	-	-	2	1	-	-	-	-	25	25	50	
9	ET2008	Lab- Signals & Systems	1,2,4	-	-	2	1	-	-	-	-	25	25	50	
10	MANDAT	ORY COURSES (Only ONE	Course during	four	year P	rogra	m)								
			Total	19	0	6	22	85	75	60	330	75	75	700	
					SEMI	ESTER	R-11								

THF	EORY COU	RSES			SEMI										
Sr. No	Course	Section	Programm e Outcomes	Tea	cheme ching /Week	(Hrs	Total	Scheme of Evaluation (Marks)							
•	Code	Subject		L	Т	Р	Credit s	TestI	The TestI I	eory TA	ESE	Term Work	Practical / Viva- voce	Total	
1	HS1004	Any one from Humanity Group		3	-	-	3	15	15	10	60	-	-	100	
2	ET2009	Instrumentation & Measurement	1,2,5	2	-	-	2	10	-	10	30	-	-	50	
3	ET2011	Network Theory	1,2,11	3	2	-	4	15	15	10	60	-	-	100	
4	ET2013	Linear Integrated Circuits	1,2,3	3	-	-	3	15	15	10	60	-	-	100	
5	ET 2015	Analog Communication	1,2,3,11	3	-	-	3	15	15	10	60	-	-	100	
6	ET 2017	Mathematics- IV	1,2,3,11	4	-	-	4	15	15	10	60	-	-	100	
	LABORA	FORY COURSES													
7	ET2010	Lab- Instrumentation & Measurement	1,4	-	-	2	1	-	-	-	-	25	25	50	
8	ET2012	Lab- Network Theory	1,.4,5,11	-	-	2	1	-	-	-	-	25	25	50	
9	ET2014	Lab- Linear Integrated Circuits	1,4,5	-	-	2	1	-	-	-	-	25	25	50	
10	ET2016	Lab-Analog Communication	4,5,11	-	-	2	1	-	-	-	-	25	25	50	
11	MANDAT	ORY COURSES (Only ONE	Course during	four	year P	rogra	m)								
			Total	17	4	8	23	85	75	60	330	100	100	750	
			Grand Total	36	4	14	45	170	150	120	660	175	175	1450	

L-Lectures, T-Tutorials, P-Practical, TA-Teacher Assessment, ESE-End-Semester Examination

Mandatory Courses: Group Discussion/ Seminar/ Implant Training/ NSS/ NCC/ Yoga/ Talent Hour

MA2001:	Engineering Mathematics-III (Basic Science)
Teaching Scheme Lectures: 4 Hrs/Week Total Credits : 3+1+0	Examination SchemeClass Test-I: 15 MarksClass Test-II: 15 MarksTeachers Assessment: 10MarksEnd Semester Exam: 60 Marks

Course description:

Engineering Mathematics-III (MA 2001) is a compulsory course to all second year engineering students of the institute in the Semester –III and is a continuation of previous year courses viz. Engineering Mathematics-I (MA1001) and Engineering Mathematics-II (MA1002). This course intends to provide engineering students a coherent and balanced account of major mathematical techniques and tools.

Course Objective:

This course intends to provide an overview of analytical and numerical techniques to solve ordinary and partial differential equations, which we apply to solve many engineering problems of mechanical, civil electrical Engineering.

Course Outcomes:

After completing the course, students will be able to:

CO1	Determine the solution of second and higher order linear differential equation and apply
	knowledge of LDE to solve the problems in Engineering
CO2	Classify, formulate and solve the first order and second order linear, non-linear partial differential equations and apply the knowledge of partial differential equations to solve the problems in Engineering
CO3	Find approximate solution of ordinary differential equations of first order and find the
	convergence and stability of the approximate solutions

Detailed syllabus:

Unit-I	Linear Differential Equations (LDE):	08
	Linear Differential Equations (LDE) with constant coefficients, Differential	Hrs
	equations reducible to LDE with constant coefficients, Simultaneous LDE with	
	constant coefficients	
Unit-II	Applications of Linear Differential Equations (LDE):	08
	L-C-R Circuit, Coupled Electrical Circuits, Bending of beams, Spring-Mass	Hrs
	system	
Unit-III	Partial Differential Equations (PDE):	08
	First order linear/ nonlinear Partial Differential Equation Formation (PDE),	Hrs
	Lagrange's equation, Linear Partial Differential Equations (PDE) of second and	
	higher order with constant coefficients, Linear non-homogeneous PDE.	
Unit-IV	Applications of Partial Differential Equations:	08
	Solutions of one-dimensional wave equation, one-dimensional heat equation,	Hrs
	Steady state solution of two-dimensional heat equation, Fourier series solutions in	
	Cartesian coordinates.	

Unit-V	The approximation for the solution of first order Ordinary Differential	08
	Equations:	Hrs
	Taylor series method, Euler's method, Euler's modified Method,	
	Runge-Kutta Fourth order Method, Milne's Predictor-Corrector Method, Solution	
	of system of ordinary differential equations by Runge-Kutta methods.	

Text and Reference Books

- 1. A Text Book of engineering Mathematics (Vol.1 &2) by P.N.Wartikar & J.N.Wartikar, Pune Vidhyarthi Griha Prakashan, Pune.
- 2. Advanced Engineering Mathematics by Erwin Kreyszig, Willey Eastern Ltd. Mumbai.
- 3. Engineering Mathematics-A Tutorial Approach by Ravish R Singh, Mukul Bhatt.
- 4. Higher Engineering Mathematics by B. S. Grewal, Khanna publication, New Delhi.
- 5. Advanced Engineering Mathematics by H. K. Dass, S. Chand and Sons.
- 6. Calculus by G. B. Thomas and R. L. Finney, Addison- Wesley, 1996
- 7. Elements of Partial Differential Equations by I.N. Sneddon

Mapping of Course outcome with Program Outcomes (Civil Engineering)

Course Outcom	PO 1	PO2	PO 3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1	PO1 1	PO12
e	1		5			0				0	1	
CO1	1	1	2						1			
CO2	1	1	2						1			
CO3	1	1	2						2			

Mapping of Course outcome with Program Outcomes (Mechanical Engineering)

Course Outcom	PO 1	PO2	PO 3	PO4	PO5	PO 6	PO7	PO8	PO9	PO1 0
e										
CO1	1		1		2	3				
CO2	1		2		2	3				
CO3	1		3		3	3				

Mapping of Course outcome with Program Outcomes (Electrical Engineering)

Course	PO	PO1	PO	PO	PO13	PO1								
Outcom	1	2	3	4	5	6	7	8	9	0	11	12		4
e														
CO1	1													
CO2	1													
CO3	1													

Mapping of Course outcome with Program Outcomes (Electronics and Telecommunication Engineering)

Course	PO	PO2	PO	PO4	PO5	PO	PO7	PO8	PO9	PO1	PO1	PO12
Outcom	1		3			6				0	1	
e												

CO1	2	3	3			3	3	
CO2	2	3	3			3	3	
CO3	2	3	3			3	3	

Mapping of Course outcome with Program Outcomes (Computer Science Engineering)

Course	PO	PO2	PO	PO4	PO5	PO	PO7	PO8	PO9	PO1	PO1	PO12
Outcom	1		3			6				0	1	
e												
CO1	1	1										3
CO2	1	1										3
CO3	1	1										3

Mapping of Course outcome with Program Outcomes (Information Technology)

Course	PO	PO2	PO	PO4	PO5	PO	PO7	PO8	PO9	PO1	PO1	PO12
Outcom	1		3			6				0	1	
e												
CO1	1	1								3		
CO2	1	1								3		
CO3	1	1								3		

1 - High, 2 - Medium, 3 - Low

Assessment table:

Course outcomes		CO1				CO2			CO3			
Assessment Tool	K1	K2	K3	K5	K1	K2	K3	K5	K1	K2	K3	K5
Class Test-I 15 Marks	2	1	6	6	0	0	0	0	0	0	0	0
Class Test-II 15 Marks	0	0	0	0	2	1	6	6	0	0	0	0
Teachers Assessment 10 Marks	1	1	0	2	1	1	0	2	0	0	0	2
ESE Assessment 60 Marks	4	0	10	10	4	0	10	10	2	0	0	10

Teaching Strategies:

The teaching strategy planned through the lectures, and team based home works. Exercises assigned weekly to stimulate the students to actively use and revise the learned concepts, which also help the students to express their way of solving the problems fluently in written form. Most critical concepts and mistakes emphasized

Teacher's Assessment: Teacher's assessment of 10 marks based on the following.

- 1) Home assignments
- 2) Surprise tests with multiple choice questions

Assessment Pattern Level No.	Knowledge Level	Test1	Test2	Teachers Assessment/ Assignment	End Semester Examination
K1	Remember	2	2	2	10
K2	Understand	1	1	2	0
K3	Apply	06	06	00	20
K4	Analyze	00	00	00	00
K5	Evaluate	06	06	06	30
K6	Create	00	00	00	00
Total		15	15	10	60

ET2001 : Electrical Fundamentals					
Teaching Scheme Examination Scheme					
Lectures: 2 Hrs/Week	Test 1 : 10 Marks				
Credits: 02	Teachers Assessment : 10 Marks				
	End Semester Exam : 30 Marks				

Course description: On completion of this course, students will have a knowledge of fundamentals of electronics Engineering. It includes the Kirchhoff's voltage law, current law, source transformation, network analysis methods and AC circuits.

Course Objectives:

- To offer basic understanding for solving circuits using KCL, KVL and network theorems.
- To explain DC circuits, magnetic circuits and AC circuits.

Course Outcomes

After completing the course, students will be able to:

CO1	K1	Define network theorems, analysis methods fundamentals of magnetic and AC circuits
CO2	K2	Understand DC circuits, magnetic circuits and AC circuits for simplifying the complex networks.

Detailed Syllabus:

Unit 1	DC Circuits:
	Kirchoff's laws, Source conversion, series and parallel circuit, current and voltage
	division rule, Delta-star and star-delta conversion, Node voltage and Mesh current
	methods, Superposition theorem, Thevenin's and Norton's theorems, Maximum power
	transfer theorem. Charging and discharging of capacitor, Time constant for RC circuit
Unit 2	Electromagnetic Induction: Faraday's laws, statically and dynamically induced emf,
	self and mutual inductance, coefficients of coupling, dot convention, inductance in
	series and parallel, principle of operation, constructional details, types and applications
	of single phase Transformer, Induction motors, DC motors.
Unit 3	Single phase AC Circuits: Concept of single phase supply, Terms related with A.C.
	quantities, pure resistive, inductive and capacitive circuits, Complex and phasor
	representation of AC quantities, series and parallel circuits, introduction to resonance

TEXT AND REFERENCE BOOKS

- 1. Leonard Bobrow "Fundamentals of Electrical Engineering", Oxford University press
- 2. Vincent Del Toro, "Principles of Electrical Engineering", Prentice Hall.
- 3. D.P. Kothari, I.J Nagrath, "Basic Electrical Engineering "Tata McGraw Hill
- 4. M.S.Naidu, S.Kamakshaiah,"Introduction to Electrical Engineering" Tata McGraw Hill
- 5. J.P.Tiwari,"Basic Electrical Engineering "New Age Publication
- 6. Joseph Administer,"Schaum's outline of Electric circuits", Tata McGraw Hill

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcome												
CO1	3											
CO2	2	2										

1 – High2 – Medium3 - Low

Teacher's Assessment: Teachers Assessment of 10 marks is based on one of the / or combination of few of following

- 1) Simulation
- 2) Prototype development
- 3) Power point presentation of case studies
- 4) Question & answer / Numerical solution

Assessment Pattern

Assessment	Knowledge Level	Test 1	Teachers	End Semester
Pattern			Assessment/	Examination
Level No.			Assignment	
K1	Remember	04	00	06
K2	Understand	06	10	24
K3	Apply	00	00	00
K4	Analyze	00	00	00
K5	Evaluate	00	00	00
K6	Create	00	00	00
Total Marks	100	10	10	30

Assessment table

Assessment Tool	K1	K2
	C01	C02
Class Test (20 Marks)	04	06
Teachers Assessment (20 Marks)	00	10
ESE Assessment (60 Marks)	06	24

Special Instructions if any: Nil

ET2002 : Programming Language						
(Engineering Science Elective)						
Teaching Scheme	Examination Scheme					
Lectures: 2 Hrs/Week	Class Test : 10 Marks					
Total Credits : 02	Teachers Assessment : 10 Marks					
	End Semester Exam : 30 Marks					

Prerequisites: Nil

Course description: This course covers fundamentals of Programming. It mainly emphasizes on programming language C. It deals with introduction of C language along with applications development using it.

Course Objectives:

- To learn and acquire art of computer programming
- To know about concepts of popular programming language C •
- To develop simple applications using C programming concepts •

Course Outcomes

After completing the course, students will able to:

CO1	To learn basics of C Programming Language	K1
CO2	To Write & Debug C Programs using basic C constructs	K2
CO3	Solve real time problems using C programming Language	K3

Detailed Syllabus:

Unit 1	Introduction to C Language fundamentals , The C character set, variables and constants, data types, keywords, expressions, statements, operators- arithmetic operators , unary operators, relational & logical operators, conditional operators, type conversions , type casting.
Unit 2	 C Programming: Control Structures- Conditional and Unconditional Branching Using if, nested if, if else, switch, break, continue, go to statement, and return statements. Loop structures - For loop, While loop, Do while loop. Functions – Creating subprograms using Functions, Parameter passing by value, parameter passing by reference, returning values from functions, recursion, Local and Global variables concepts, main function with argy, argc[].
Unit 3	 Arrays- definition, passing array to the function, Multidimensional array, String operation-String copy, String length, String concatenation, String compare. Introduction to structure and union. Array of structure, Passing structure as an object to function. Structure as an return type of function. Pointers- pointer as a variable, pointer to array, pointer as argument to function. String operations using pointers.

Text and Reference Books

- 1. E. Balgurusamy, "Programming in ANSIC C", Third Edition, Tata McGraw Hill.
- 2. Kernighan Ritchie, "The C Programming Language", Prentice Hall of India.
- Yashvant Kanetkar, "Let Us C", Seventh Edition, BPB Publications.
 Behrouz A. Forouzan, Richard F. Gilberg, "Computer Science- A Structured Programming approach using C", Indian Edition, Thomson, 3rd Edition.

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcome												
CO1	2											
CO2	2	2									3	
CO3		2	3								3	

1 – High 2 – Medium 3 - Low

Teacher's Assessment: Teachers Assessment of 20 marks is based on one of the / or combination of few of following

- 1) Application development using C
- 2) Power point presentation of case studies
- 3) Question & answer
- 4) Mini projects

Assessment Pattern

Assessment Pattern Level No.	Knowledge Level	Class Test	Teachers Assessment/ Assignment	End Semester Examination
K1	Remember	04	00	05
K2	Understand	06	10	20
K3	Apply	00	00	05
K4	Analyze	00	00	00
K5	Evaluate	00	00	00
K6	Create	00	00	00
Total Marks	50	10	10	30

Assessment table

Assessment Tool	K1	K2	K2
	CO1	CO2	CO3
Class Test (10 Marks)	04	06	00
Teachers Assessment (10 Marks)	00	05	05
ESE Assessment (30 Marks)	05	20	05

Special Instructions if any: Nil

ET 2003 : Electronics Devices and Circuits						
Teaching Scheme Examination Scheme						
Lectures: 3 Hrs/Week	Test 1	: 15Marks				
Credits: 03	Test 2	: 15 Marks				
	Teachers Assessment	: 10 Marks				
	End Semester Exam	: 60 Marks				

Prerequisites: Knowledge of Physics and Mathematics

Course description: After completing this course, students will be able to understand working principles of semiconductor devices and their applications also analyze frequency response. This will help students in learning dependent core courses.

Course Objectives:

- To acquaint the students with construction, theory and characteristics of various Semiconductor devices
- To lay a strong fundamental base of electronics.
- To develop capacity to interpret and analyze different electronics circuits

Course Outcomes

After completing the course, students will able to:

CO1	Know basics of semiconductor devices.	K1
CO2	Understand working and characteristics of semiconductor devices	K2
CO3	Describe various applications of diode and transistor	K2
CO4	Analyze amplifiers for various frequency models	K3

Detailed Syllabus:

Unit 4	Feedback Amplifiers and Oscillators
	Lead Compensation, Split Pole Compensation, Source Degeneration, Barkhausen criteria of
	stability, Feedback Oscillators- Hartley, Colpitts, Ring Oscillator, LC-Oscillators, Jitter and
	Phase Noise, Effect of phase noise on RADAR and communication systems, Crystal
	Oscillators
Unit 5	Power Amplifiers
	Non-switching Amplifiers- Class A, Class B, Class C, Class AB, Class B Push-pull, Cross-
	over distortion in Class B Push-pull, Class AB Push-pull
	Switching Amplifiers- Class E, Class F and Class D amplifiers
	Mixed Mode Amplifiers- Class J
	Device Utilization Factor, Power Added Efficiency, Power Gain, Return Loss, Power
	Amplifier Non-linearity- Third Order Intercept (TOI), IM3. Spectral Regrowth, EVM and
	BER.
	Application of Power Amplifiers in RADAR and Communication Systems. Power
	Amplifiers in TDD and FDD Systems
Text an	d Reference Books
1. E	Boylestad & Nashelsky, Electronics Devices & Circuits, Pearson Education
2. N	Aillman & Halkias, Electronic Devices & Circuits, TMH
3. I	D. A. Neamen, Electronic circuit analysis and design, TMH, (Second edition)
4. S	S.Salivahanan, N Sureshkumar, "Electronic Devices and Circuits", McGraw Hill Publication(Third Editio

S.Salıvahanan, N Sureshkumar, "Electronic Devices and Circuits", McGraw Hill Pul
 J.B. Gupta, "Electronic Devices and Circuits", Katson Education Series(6th Edition)

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcome												
CO1	2	3										
CO2	2	2										
CO3	2	2										
CO4	1	2	2									

1 – High2 – Medium3 - Low

Teacher's Assessment: Teachers Assessment of 20 marks is based on one of the / or combination of few of following

- 1) Simulation
- 2) Application development
- 3) Power point presentation of case studies
- 4) Question & answer / Numerical solution
- 5) Mini projects

Assessment Pattern	Knowledge Level	Class Test I	Class Test	Teachers Assessment/ Assignment	End Semester Examination
Level No.			II		
K 1	Remember	04	04	00	10
K2	Understand	05	05	03	20
K3	Apply	06	06	05	20
K4	Analyze	00	00	02	10
K5	Evaluate	00	00	00	00
K6	Create	00	00	00	00
Total Marks	100	15	15	10	60

Assessment table

Assessment Tool	K1	K2	K2	K3
	CO1	CO2	CO3	CO4
Class Test 1 (15 Marks)	04	05	06	00
Class Test 2 (15 Marks)	04	05	06	00
Teachers Assessment (10 Marks)	05	05	05	05
ESE Assessment (60 Marks)	10	20	20	10

ET2004: Lab-Electronics Devices and Circuits					
Teaching Scheme	Examination Scheme				
Practical: 2Hrs/Week	Term Work : 25 Marks				
Credits: 01	Practical Examination				
	& Viva Voce: : 25 Marks				

Laboratory Course Outcomes

As an outcome of completing the Laboratory course, students will able to:

CO1	Know the testing of components
CO2	understanding of electrical circuits in practical applications
CO3	to analyze and design amplifier circuits, oscillators and filter circuits employing BJT, FET devices
CO4	Implement hardwired circuit to test performance and application for what it is being designed.

List of Experiments

Sr. No.	Details
1.	To calculate Efficiency and Ripple Factor in case of Half Wave, Full Wave & Bridge Rectifier
	and to observe the effect of load and filters.
2	Study of Series Positive Clipper and Series Negative Clipper Circuits and Shunt Positive
	Clipper and Shunt Negative Clipper Circuits
3	To analyze the Drain and Transfer Characteristics of N- channel MOSFET
4	To evaluate Input resistance, Output resistance and Current gain of NPN and PNP Transistor in
	CB, CC and CE Configuration and plot their characteristics
5	Evaluation of following parameters of JFET: DC Drain resistance, Transconductance,
	Amplification factor and plot the V-I characteristics of JFET
6	To plot the Frequency response of RC-Coupled amplifier
7	To plot the Frequency response of a FET amplifier.
8	Study of design and functioning of Hartley Oscillator, Colpitt Oscillator and Wein Bridge
	Oscillator
9	Study of the working principle of Class A, Class B and Class AB Push-pull Amplifier
10	Study of the working principle of class C Amplifier, Differential amplifier and its operation at
	tuned frequency

Mapping of Course outcome with Program Outcomes

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1				1	3							
CO2		1										
CO3		1	2									
CO4				1	2							

1 – High 2 – Medium 3 - Low

Assessment Table

Assessment Tool	S 1	S2	S3	S2
	CO1	CO2	CO3	CO4
Term Work (25 Marks)	05	05	10	05
Practical Examination & Viva Voce (25 Marks)	10	05	05	05

Assessment Pattern	Skill Level	Term	Practical Examination & viva voce
Level No.		Work	
S1	Imitation	05	10
S2	Manipulation	10	10
S3	Precision	10	05
S4	Articulation	00	00
55	Naturalization	00	00
Total		25	25

Preparation (S1)	05	10
Conduct of Experiment (S2)	10	10
Observation and Analysis of Results (S3)	05	05
Mini-Project / Presentation/ Viva-Voce (S3)	05	00
Total	25	25

ET2005 : Digital Electronics (Professional Core)					
· · · · · · · · · · · · · · · · · · ·	/				
Teaching Scheme Examination Scheme					
Lectures: 03 Hrs/Week	Class Test I	:15 Marks			
Total Credits :03	Class Test II	:15 Marks			
	Teachers Assessment	:10 Marks			
	End Semester Exam	:60 Marks			

Prerequisites: Nil

Course description: After completing this course, students will have a clear and fundamental understanding of Digital systems. Topics range from an overview of Basics of Digital Electronics, Types of digital logics, different logic families and Finite State Machine

Course Objectives:

- To lay a strong base in basic principles of Numbering Systems, logic gates
- To use basic components for digital electronics design
- To Design combinational and Sequential Circuits
- To develop conceptual understanding of Logic Families & HDL

Course Outcomes

After completing the course, students will able to:

CO1	Identify functions of digital circuits and their Boolean representation.
CO2	Understand fundamentals of minimization techniques and basic building circuits for Digital
	electronics.
CO3	Design combinational and sequential circuits.

Detailed Syllabus:

Unit 1	Boolean Algebra and Logic Simplification
	BCD, Octal, Hexadecimal Number systems, Conversions from one to other type, De
	Morgan"s
	Theorem, Code converters, Logic Gates. Reduction of logic function using Boolean algebra,
	SOP & POS forms, canonical forms of SOP and POS equation. Karnaugh map up to 4
	variables.
Unit 2	Combinational Logic Design
	Code conversion, Half, Full Adders and subtractor circuits, Digital Comparator, Multiplexer,
	Demultiplexer, Encoder, Decoder, Study of ALU
Unit 3	Sequential Logic Design
	S-R, clocked S-R, J-K and Master-Slave J-K flip-flops, excitation table of flip-flop, flip flop
	Conversions, shift registers their types and applications, Counters, Design of ripple and
	synchronous counters
Unit 4	Logic Families, Interfacing:
	TTL NAND gate, specifications, tri-state TTL, ECL, MOS, CMOS families and their
	interfacing. Introduction to ADC and DAC
Unit 5	Finite State Machine
	Clocked synchronous state machine analysis, Clocked synchronous state machine design,
	Mealy and Moore machine, designing state machines using state diagrams and state table.

Text/References

- A.P. Malvino, Digital Electronics, Mc-Graw Hill
- W.H. Gothman, Digital Electronics-An introduction to theory and practice, PHI
- Douglas V. Hall, Digital Circuits and Systems, McGraw Hill
- R.P.Jain, Digital Electronics, Tata McGraw Hill
- William I Fleatcher, An Engineering approach to digital design, PHI
- J.F.Wakerly: Digital Design, Principles and Practices,4thEdition,Pearson Education, 2005
- Charles H Roth: Digital Systems Design using VHDL, Thomson Learning, 1998
- H.Taub and D. Schilling, Digital Integrated Electronics, McGraw Hill, 1977
- D.A. Hodges and H.G. Jackson, Analysis and Design of Digital Integrated Circuits, International Student Edition, McGraw Hill, 1983.

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcome												
CO1	3											
CO2	2	2										
CO3	1	1	2									
1 TT' 1	-	N.C. 11		<u>э</u> т								

1 – High	2 – Medium	3 – Low
----------	------------	---------

Teacher's Assessment: Teachers Assessment of 20 marks is based on one of the / or combination of few of following

- 1) Simulation
- 2) Application development
- 3) Power point presentation of case studies
- 4) Question & answer / Logic problem solving
- 5) Mini projects

Assessment Pattern

Assessment	Knowledge Level	Test I	Test II	Teachers	End	
Pattern				Assessment/	Semester	
Level No.				Assignment	Examination	
K1	Remember	10	00	00	12	
K2	Understand	05	10	05	30	
K3	Apply	00	05	05	18	
K4	Analyze	00	00	00	00	
K5	Evaluate	00	00	00	00	
K6	Create	00	00	00	00	
Total Marks	100	15	15	10	60	

Assessment table

Assessment Tool	K1	К3	K2
	C01	C02	C03
Class Test I (15 Marks)	10	05	00
Class Test II (15 Marks)	00	10	05
Teachers Assessment (10 Marks)	00	05	05
ESE Assessment (60 Marks)	12	30	18

ET2006: Lab-Digital Electronics							
Teaching Scheme Examination Scheme							
Practical: 2Hrs/Week	Term Work :25 Marks						
Total Credits :01	Practical Examination						
	& Viva Voce: :25 Marks						

Laboratory Course Outcomes

As an outcome of completing the Laboratory course, students will able to:

CO1	Implement logical operations using basic and universal logic gates
CO2	Perform and realize arithmetic, logic circuits using ICs
CO3	Execute and realize the combinational logic circuits using gates and ICs
CO4	Perform and realize sequential logic, circuits using ICs.

List of Experiments

Note: At least 10 Practicals should be performed.

Sr. No.	Details
1	To verify of logic gates such as AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR
2	To realize logic operations using NAND /NOR
3	To reduce Karnaugh Map (SOP/POS)
	Realize a code converter binary to gray
	• Realize a circuit to detect prime numbers in a 4-bit binary numbers
	• Realize a circuit to detect the numbers divisible by 03 in 4-bit binary numbers
4	To develop Adder/ Subtractor
	Study of 4-bit adder using IC7483
5	Multiplexer- Demultiplexer
	Study of 4-bit Adder using 4:1 MUX
6	To study Decoder 3:8, 4:16
7	To study Encoder 8:3, 16:4
8	To study Flip-flops D, R-S, J-K
	Realize conversion of JK to T, JK to D flip flop
9	To design Asynchronous counter using J-K Flip-flops
10	To study Shift Register
11	To study Decade counter/Ring counter
12	To design Synchronous Counter using J-K Flip –flops
13	To study A.L.U. such as 74181
14	Introduction to Hardware Description Language,

Mapping of Course outcome with Program Outcomes

11 0					0						-	
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcome												
CO1	2				2							
CO2				2								
CO3				1	2							
CO4				1	2							
4 779 1	•	3 7 11		T								

1 - High 2 - Medium 3 - Low

Assessment Table

Assessment Tool	S1	S2	S 3	S2
	CO1	CO2	CO3	CO4
Term Work (25 Marks)	05	05	10	05
Practical Examination & Viva Voce (25 Marks)	05	05	10	05

Assessment Pattern Level No.	Skill Level	Term Work	Practical Examination & viva voce
S1	Imitation	05	05
S2	Manipulation	15	15
S 3	Precision	05	05
S4	Articulation	00	00
S5	Naturalization	00	00
Total		25	25

ET2007: Signals and Systems						
Teaching Scheme Examination Scheme						
Lectures: 3 Hrs/Week	Class Test I	: 15 Marks				
Credits: 3	Class Test II	: 15 Marks				
	Teachers Assessment	: 10 Marks				
	End Semester Exam	: 60 Marks				

Prerequisites: Inclination to learn mathematics, basic knowledge of differential equations and difference equations, electrical circuits and networks.

Course Description:

The course will provide strong foundation on signals and systems which will be useful for creating foundation of communication and signal processing. The students will learn basic continuous time and discrete time signals and systems. Student will understand application of various transforms for analysis of signals and systems both continuous time and discrete time. Students will also explore to power and energy signals and spectrum.

Course Outcomes

After completing the course, students will be able to:

CO1	Identify different signals, systems and transforms.	K1
CO2	Understand about various types of signals and systems	K2
CO3	Understand behavior of signal in time and frequency domain.	K2
CO4	Apply various transforms on signals	K3

Detailed Syllabus:

Unit 1	Basic definitions, Classification of signals and systems. Signal operations and properties. Basic continuous time signals, signal sampling and reconstruction, Basic system properties.
Unit 2	Continuous and discrete time: Impulse response characterization and convolution integral for LTI system, signal responses to LTI system, properties of convolution, LTI system response properties
Unit 3	Laplace Transform and its properties, Inverse Laplace Transform Application of Laplace transform.
Unit 4	Fourier Analysis of Continuous Time Signals and Systems, Fourier Series, Fourier Transform and properties, Fourier Analysis of Discrete Time Signals and Systems, Discrete Time Fourier series, Discrete Fourier Transform and properties. Frequency response of LTI systems
Unit 5	The z-Transform, Convergence of z-Transform, Basic z-Transform, Properties of z- Transform, Inverse z-Transform and Solving difference equation using z-Transform

TEXT AND REFERENCE BOOKS

- 1. Signals and Systems by Alan V. Oppenheim, Alan S. Wilsky and Nawab, Prentice Hall
- 2. Signals and Systems by K. Gopalan, Cengage Learning (India Edition)
- 3. Signals and Systems by Michal J. Roberts and Govind Sharma, Tata Mc-Graw Hill Publications
- 4. Signals and Systems by Simon Haykin and Bary Van Veen, Wiley- India Publications
- 5. Linear Systems and Signals by B.P.Lathi, Oxford University Press
- 6. Signal, Systems and Transforms by Charles L. Philips, J. M. Parr and E. A. Riskin, Pearson Education
- 7. Digital Signal Processing Fundamentals and Applications by Li Tan, Elsevier, Academic Press 8. Signal and Systems By Anand Kumar, 3rd Edition, PHI

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcome												
CO1	3	3										
CO2	2	2									3	
CO3	2	2									3	
CO4	1	2									2	

1 – High 2 – Medium 3 - Low

Teacher's Assessment: Teachers Assessment of 20 marks is based on one of the / or

combination of few of following

- 1) Simulation
- 2) Prototype development
- 3) Power point presentation of case studies
- 4) Question & answer / Numerical solution

Assessment Pattern Level No.	Knowledge Level	Test 1	Test 1	Teachers Assessment/ Assignment	End Semester Examination
K1	Remember	05	00	00	12
K2	Understand	10	10	05	36
K3	Apply	00	05	05	12
K4	Analyze	00	00	00	00
K5	Evaluate	00	00	00	00
K6	Create	00	00	00	00
Total Marks	100	15	15	10	60

Assessment table

Assessment Tool	K1	K2	K2	K3
	CO1	CO2	CO3	CO4
Class Test (20 Marks)	05	10	00	00
Teachers Assessment (20 Marks)	00	10	05	00
ESE Assessment (60 Marks)	12	18	18	12

ET2008: Lab-Signals and Systems								
Teaching Scheme	Teaching Scheme Examination Scheme							
Practical: 2 Hrs/Week	Term Work	: 25 Marks						
Total Credits :01	Practical Examination							
	& Viva Voce:	: 25 Marks						

Laboratory Course Outcomes

As an outcome of completing the Laboratory course using MATLAB/CCS/IDE, students will able to:

CO1	Build mathematical modeling of signals and systems
CO2	Simulate continuous and discrete time system
CO3	Execute frequency response of FT/DFT/filters, transfer order

List of Experiments

Sr. No.	Details
1	List of Experiments: 1. Generations and capturing various continuous time signals from
	sensors. 2. Generation and capturing of discrete time signals and plot them.
	3. Discretization using different sampling rate and observing aliasing effect.
	4. Observing the effects of lower sampling rate and higher sampling rate on CT signal.
	5. Performing various operations on the signal using circuits and computational software.
	6. Using digital circuit building block to perform operations on signals.
	7. Simulation of continuous time LTI system.
	8. Simulation of discrete time LTI systems.
	9. Obtaining impulse response of the systems.
	10. Computing FT and DTFT of the CT signals and DT sequences.
2	Design based Problems (DP)/Open Ended Problem: 1. Design of active noise removal /
	cancellation circuit. 2. Design of digital building blocks to perform various operations on
	discrete time sequences and singals. 3. Design of efficient and accurate signal converter.
	4. Design of sample and hold circuits 5. Design of anti aliasing filter,

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcome												
CO1	2	3		3								
CO2		3		2								
CO3	2	2		1								

1 – High 2 – Medium 3 - Low

Assessment Table

Assessment Tool	S2	S 1	S 3
	CO1	CO2	CO3
Term Work (25 Marks)	05	10	10
Practical Examination & Viva Voce (25 Marks)	05	10	10

Assessment	Skill Level	Term	Practical Examination & viva voce
Pattern Level No.		Work	
S1	Imitation	05	05
S2	Manipulation	10	10
S 3	Precision	10	10
S4	Articulation	00	00
S5	Naturalization	00	00
Total		25	25

ET2009: Instrumentation and Measurement							
(Engineering Sciences)							
Teaching Scheme	Examination Scheme						
Lectures: 2 Hrs /Week	Test I : 10 Marks						
	Teachers Assessment : 10 Marks						
	End Semester Exam : 30 Marks						

Prerequisites: Knowledge of basic Electronics

Course description:

This course is electronics based course dealing with measurements and instrumentation designed for students in Electronics Engineering. It is a theory course based on the use of electrical and electronics instruments for measurements. The course deals with topics such as Principle of measurements, Errors, Accuracy, Units of measurements and electrical standards, Q- meters, Watt-meters, Digital voltmeters, recorders, the principles of operation of transducers used for measurement.

Course Objectives:

- To understand the operation of different instruments
- To familiarize with various measurement methods and electronic measurement equipment's
- To analyze the signals using different analyzers
- To introduce transduction methods

Course Outcomes

After completing the course, students will be able to:

CO1	Identify elements of setup for measurement of physical quantities and parameter.	K1
CO2	Explain the various techniques for parameter measurement & signal analyzing.	K2

Detailed Syllabus:

Unit 1	Instrumentation Basics and bridge measurement
	Introduction to measurements, Units and standards of measurement and their
	classification, Sensing and Transduction, Block diagram of Instrumentation system,
	Errors in measurements, Probability of errors, Static and Dynamic performance
	characteristics of measuring Transducer.
	Bridge measurement: Measurement of Voltage, Current, AC /DC Bridges such as
	Wheatstone, Kelvin, Maxwell, Hay, Schering, Wein bridge and their application.
Unit 2	Transducer
	Definition, classification, selection criterion, Resistive, Capacitive and Inductive
	Transducers, , Hall Effect Transducer, Thermocouple ,strain gauge, Transducers for
	measurement of Flow, Viscosity, Humidity, Pressure and necessary signal
	conditioning.
Unit 3	Basic Parameter Measurement and analysis by Electronic Instrumentation
	AC voltmeters using rectifiers, True RMS voltmeter, Vector voltmeter, Digital
	voltmeter, Q-meter, Electronic multimeter, Sound level meter, RF Voltage/ power
	measurement, Recorders. Wave analyzers, Harmonic distortion analyzer, DSO,
	Spectrum analyzer, logic analyzer, Network Analyzer.

Text and Reference Books

- 1. Cooper and Helfrick, Modern Electronic Instrumentation and Measurements, Prentice-Hall of India
- 2. Kalsi, Electronic Instrumentation and Measurements, TMH
- 3. Oliver & Cage, Electronic Measurements and Instrumentation, McGraw Hill
- 4. J.J. Carr, Elements of Electronics Instrumentation and Measurement Handbook, Pearson Education, 3rd Edition
- 5. B.C. Nakra and K.K. Chaudhary, Instrumentation Measurement and Analysis, Tata McGraw Hill, 2nd Edition

Mapping of Course outcome with Program Outcomes

Pmg												
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO	PO1	PO1	PO12
Outcom									9	0	1	
e												
CO1	2	2										
CO2	2	2			2							
1 – High		2 - N	ledium			3 - Lo)W					

Teacher's Assessment: Teachers Assessment of 20 marks is based on one of the / or combination of few of following

- 1) Simulation
- 2) Power point presentation of case studies
- 3) Question & answer / Numerical solution
- 4) Study of Industry processes and its presentation

Assessment Pattern

Assessment	Knowledge Level	Test I	Teachers	End Semester
Pattern			Assessment/	Examination
Level No.			Assignment	
K1	Remember	05	00	06
K2	Understand	05	10	24
K3	Apply	00	00	00
K4	Analyze	00	00	00
K5	Evaluate	00	00	00
K6	Create	00	00	00
Total Marks 100		10	10	30

Assessment table

Assessment Tool	K1	K2
	CO1	CO2
Class Test (10 Marks)	05	05
Teachers Assessment (10 Marks)	00	10
ESE Assessment (30 Marks)	06	24

ET2010: Lab Instrumentation & Measurement			
Teaching Scheme	Examination Scheme		
Practical: 2 Hrs/Week	Term Work	:25 Marks	
Total Credits :01	Practical Examination		
	& Viva Voce:	:25 Marks	

Laboratory Course Outcomes

As an outcome of completing the Laboratory course, students will be able to:

CO1	Implement the setup for obtaining characteristics of various transducer.
CO2	Perform experiments for parameter measurements by different instruments.

List of Experiments

1	Error measurement.
2	Identify unknown resistance with Wheatstone bridge
3	Measure the values of various inductors, capacitors and resistors by using LCR-Q meter.
4	Plot Pressure Transducer characteristics
5	Study Flow measurement
6	Study Strain measurement
7	Study DC voltmeter.
8	Study of multimeter.
9	Measurements using digital storage Oscilloscope
10	Study of spectrum analyzer and measurements

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcome												
CO1	3			2								
CO2	3			2								

1 – High 2 – Medium 3 - Low

Assessment Table

Assessment Tool	S 1	S2
	CO1	CO2
Term Work (25 Marks)	10	15
Practical Examination & Viva Voce (25 Marks)	10	15

Assessment	Skill Level	Term	Practical Examination &
Pattern Level No.		Work	viva voce
S1	Imitation	10	10
S2	Manipulation	15	15
S3	Precision	00	00
S4	Articulation	00	00
S5	Naturalization	00	00
Total		25	25

ET2011 : Network Theory (Professional Core)				
Teaching Scheme	Examination Scheme			
Lectures: 3 Hrs/Week	Class Test I : 15 Marks			
Tutorial: 2 Hr/Week	Class Test II : 15 Marks			
Credits: 04	Teachers Assessment : 10 Marks			
End Semester Exam : 60 Marks				

Prerequisites: Basic knowledge of Fundamentals Electrical Engineering

Course description: On completion of this course, students will have a basic and comprehensive understanding of network analysis and synthesis methods. It includes the network analysis methods, resonance, transient analysis, properties of symmetric and asymmetric network, passive filter design, attenuator, network functions and two port parameters.

Course Objectives:

To offer basic understanding for solving circuits using network theorems.

To explain resonance circuits, properties of symmetric and asymmetric passive network, passive filters and attenuators.

To give knowledge about two port parameters, network functions, stability and transient analysis of basic circuits.

Course Outcomes

After completing the course, students will able to:

CO1	Define basic terms in concern with different networks.	K1
CO2	Understand network analysis concepts.	K2
CO3	Perform transient analysis and AC analysis of few networks.	K2
CO4	Apply the knowledge of network analysis concepts to solve given problem.	K3

Detailed Syllabus:

Unit 1	Network Analysis: Mesh, Super mesh, Node and Super Node analysis, Superposition, Thevenin's, Norton's and Maximum Power Transfer Theorems, Millers Theorem and its dual.(AC circuit analysis for all above topics of this unit)
	Graph Theory:
	Network graph, tree, co-tree, and loops. Incidence matrix, tie-set, cut-set matrix.
	Formulation of equilibrium equations in matrix form
Unit 2	Transient Analysis of Basic RC, RL and RLC Circuits
	Initial conditions, source free RL and RC circuits, properties of exponential response,
	Driven RL and RC circuits, Natural and Forced response of RL and RC circuits.
	Introduction to Source free and driven series RLC circuit. Over damped and Under
	damped series RLC circuit.
Unit 3	Resonance
	Series Resonance: Impedance, Phase angle variations with frequency, Voltage and
	current variation with frequency, Bandwidth, Selectivity.
	Parallel resonance: Resonant frequency and admittance variation with frequency,

	Bandwidth and selectivity. General case: Resistance present in both branches.				
	Comparison and applications of series and parallel resonant circuits.				
Unit 4	Filters and Attenuators				
	Classifications: Symmetrical networks, asymmetrical networks, properties of				
	symmetrical and asymmetrical networks.				
	Filters: Filter fundamentals, Constant K-LPF, HPF, BPF and BSF, introduction to				
	concept of m derived LPF and HPF, Terminating half sections, and composite filters.				
	Attenuators: Introduction to Neper and Decibel. Symmetrical T and type attenuators.				
Unit 5	Two Port Network Parameters and Functions				
	Terminal characteristics of network: Z, Y, h, ABCD Parameters; Reciprocity and				
	Symmetry conditions, Applications of the parameters. Application of Laplace				
	Transforms to circuit analysis. Network functions for one port and two port networks,				
	Pole-zeros of network functions and network stability.				

TEXT AND REFERENCE BOOKS

- 1. Franklin F. Kuo, Network Analysis and Synthesis, Wiley Publications
- 2. M.E. Van Valkanburg, Network Analysis, PHI Publications
- 3. M.E. Van Valkanburg, Introduction to Modern Network Synthesis, Wiley Publications
- 4. C.L. Wadhawa, Network Analysis and Synthesis, New Age International Publications
- 5. D. Roy Chaudhary, Networks and Systems, New Age International Publications
- 6. Network Lines and Fields by John D Ryder; PHI, New Delhi.
- 7. Network Filters and Transmission Lines by AK Chakarvorty; Dhanpat Rai and Co. Publication

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcome												
CO1	3										3	
CO2	2	3									3	
CO3	2	3									3	
CO4	1	2									2	

1 – High 2 – Medium 3 - Low

Teacher's Assessment: Teachers Assessment of 10 marks is based on one of the / or combination of few of following

- 1) Simulation
- 2) Prototype development
- 3) Power point presentation of case studies
- 4) Question & answer / Numerical solution

Assessment Pattern	Knowledge Level	Class Test I	Class Test	Teachers Assessment/	End Semester Examination
Level No.			II	Assignment	
K1	Remember	05	05	00	10
K2	Understand	10	10	00	42
K3	Apply	00	00	10	08
K4	Analyze	00	00	00	00

K5	Evaluate	00	00	00	00
K6	Create	00	00	00	00
Total Marks 100		15	15	10	60

Assessment table

Assessment Tool	K1	K2	K2	K3
	CO1	CO2	CO3	CO4
Class Test I (15 Marks)	05	05	05	00
Class Test II (15 Marks)	05	05	05	00
Teachers Assessment (10 Marks)	00	00	00	10
ESE Assessment (60 Marks)	10	24	18	08

Special Instructions if any: Nil

ET2012 : Lab-Network Theory				
Teaching Scheme Examination Scheme				
Practical: 2 Hrs/Week	Term Work	: 25 Marks		
Credits: 01	Practical Examination			
	& Viva Voce:	: 25 Marks		

Laboratory Course Outcomes

As an outcome of completing the Laboratory course, students will able to:

CO1	Experiment for verification of network theorems, transient response of RL, RC circuits and			
	measurements of two port parameters for a given circuit.			
CO2	Plot frequency response of passive networks.			

List of Experiments

Sr. No.	List of Experiments
1	To verify
	i. Thevenin's theorem.
	ii. Maximum power transfer theorem
	iii. Superposition theorem.
2	To find transient response of RL and RC circuits
3	To measure the 'Z' and 'Y' parameters of two port network.
4	To measure the 'h' and ABCD parameters of two port network.
5	i. To find resonance frequency and bandwidth of series and parallel RLC circuit.
	ii. Simulate parallel resonance circuit in which resistance present in both branches
6	To plot frequency response of low pass and high pass filter. Also find out cutoff
	frequency.
7	To plot frequency response of band pass and band stops filter.
8	To plot frequency response of m derived low pass and high pass filter.
9	Design of symmetrical T and pi attenuator

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcome												
CO1	2			2							3	
CO2	2			2	3						3	

1 – High 2 – Medium 3 - Low

Assessment Table

Assessment Tool	S2	S2
	CO1	CO2
Term Work (25 Marks)	15	10
Practical Examination & Viva Voce (25 Marks)	15	10

Assessment Pattern Level No.	Skill Level	Term Work	Practical Examination & viva voce
S1	Imitation	05	05

S2	Manipulation	20	20
S3	Precision	00	00
S4	Articulation	00	00
S5	Naturalization	00	00
Total		25	25

ET2013 : I	inear Integrated Circuits				
(P	(Professional Core)				
Teaching Scheme	Examination Scheme				
Lectures: 3 Hrs/Week	Class Test I : 15 Marks				
Total Credits : 03	Class Test II : 15Marks				
	Teachers Assessment : 10 Marks				
	End Semester Exam : 60 Marks				

Prerequisites: Knowledge of Electronic Devices and Circuits

Course description: This course covers fundamentals of Linear Integrated Circuits. It deals with characteristics of Operational amplifiers. It covers applications such as summing, precision rectifying, filtering as well as timer, PLL *etc*.

Course Objectives:

To impart knowledge of working principles of Op-Amp & its applications

To emphasize the features and advantages of integrated circuits

To introduce the theoretical concepts and applications of analog multipliers & PLL

To design simple filter circuits for particular application

Course Outcomes

After completing the course, students will able to:

CO1	Define the basic concepts related to Op-Amp.	K1
CO2	Explain the working of op-amp based circuits.	K2
CO3	Illustrate linear ICs and their use.	K2
CO4	Apply linear circuits for real life situations	K3

Detailed Syllabus:

Unit 1	Op-Amp Fundamentals Block diagram of Op-Amp. An overview of different types of OPAMP, their peculiarities and application areas. Op-Amp parameters, Frequency response, inverting, and non-inverting configurations.
Unit 2	Op-Amp Applications Summing amplifier, Difference amplifier, Instrumentation amplifier and applications, Integrator, Differentiator and applications. V to I and I to V converter, Comparators, Limitations of Op-amp as Comparator, Schmitt trigger, Comparator IC LM339, Precision rectifiers, Peak detector.
Unit 3	Signal Generators Sine wave generators, Triangular wave generators, Saw tooth generators, V to F and F to V converters, function generator IC 8038, Multi vibrators using IC 555, D-A and A-D converters.
Unit 4	Active Filter Design

	All types of filter responses, First and second order active filters LP and HP, BPF, band reject and bi quad filters, sensitivity analysis.
Unit 5	Non-linear Applications and Phase Locked Loops Log and Antilog amplifiers, Analog multipliers, Block diagram of PLL, free running frequency, lock range, capture range, Transfer characteristics of PLL, Block diagram of PLL IC 565, Applications of PLL - Frequency synthesizer, FM demodulator, AM demodulator, FSK demodulator

Text and Reference Books

- 1. D. Roy Choudhary, Shail Jain, Linear Integrated Circuits, New Age International
- 2. MilimanHykin, Integrated Circuits, TMH.
- 3. GovindDaryanani, Principles of Active Network Synthesis and Design, John Wiley and Sons
- 4. Ramakant A. Gaikwad, "Op-Amps and Linear Integrated Circuits", PHI.
- 5. Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", TMH, Third Edition

Mapping of Course outcome with Program Outcomes

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2
CO1	2											
CO2	2		3									
CO3	2	3										
CO4	2	3	2									

1 – High2 – Medium3 - Low

Teacher's Assessment: Teachers Assessment of 10 marks is based on one of the / or combination of few of following

- 1) Simulation
- 2) Application development
- 3) Power point presentation of case studies
- 4) Question & answer / Numerical solution
- 5) Mini projects

Assessment Pattern Level No.	Knowledge Level	Class Test I	Class Test II	Teachers Assessment/ Assignment	End Semester Examination
K1	Remember	10	00	00	12
K2	Understand	05	15	10	42
K3	Apply	00	00	00	06
K4	Analyze	00	00	00	00
K5	Evaluate	00	00	00	00
K6	Create	00	00	00	00
Total Marks 100		15	15	10	60

Assessment table

Assessment Tool	K1	K2	K2	K3
	CO1	CO2	CO3	CO4
Class Test I (15 Marks)	10	05	00	00
Class Test II (15 Marks)	00	10	05	00
Teachers Assessment (10 Marks)	00	05	05	00
ESE Assessment (60 Marks)	12	24	18	06

Special Instructions if any: Nil

ET2014 : Lab Linear Integrated Circuits					
Teaching Scheme Examination Scheme					
Practical: 2 Hrs/Week Term Work : 25 Marks					
Total Credits : 01 Practical Examination					
	& Viva Voce:	: 25 Marks			

Laboratory Course Outcomes As an outcome of completing the Laboratory course, students will able to:

CO1	Imitate measurement process for Op-Amp parameters & Op-Amp applications.
CO2	Implement wave generator circuit.
CO3	Demonstrate the applications using linear ICs.

List of Experiments

Sr.	List of Experiments
No.	
1	To measure operational amplifiers parameters.
2	To build noninverting amplifier and to study Op-Amp as unity gain buffer.
	To build inverting amplifier and to study Op-Amp as inverter (sign changer).
3	To build Summing amplifier and subtractor.
4	To assemble Integrator and Differentiator.
5	To plot Frequency response of active filter (LP/HP)
6	To build Voltage to current converter
7	To build Waveform generator 8038
8	To assemble and plot the output waveform for astable multivibrators using IC555
9	To assemble Zero crossing detector and observe the input output waveforms.
10	To study PLL 565

Mapping of Course outcome with Program Outcomes

201	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	POII	PO1 2
3			2								
3			2	2							
3			2	2							
	3 3 3	3 3 3	3 3 3	3 2 3 2 3 2 3 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 2 3 2 3 2 3 2 2 2	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 2 1 1 3 2 2 1 3 2 2 1

1 – High 2 – Medium 3 - Low

Assessment Table

Assessment Tool	S 1	S2	S2
	CO1	CO2	CO3
Term Work (25 Marks)	05	10	10

Practical Examination & Viva Voce (25 Marks)	05	10	10
--	----	----	----

Assessment Pattern Level No.	Skill Level	Term Wor k	Practical Examination & viva voce
S1	Imitation	05	05
S2	Manipulation	20	20
S3	Precision	00	00
S4	Articulation	00	00
55	Naturalization	00	00
Total		25	25

ET2015 : Analog Communication (Professional Core)									
Teaching Scheme Lectures : 03Hrs/Week Total Credits : 03	Examination SchemeClass Test I: 15 MarksClass Test II: 15 MarksTeachers Assessment: 10 MarksEnd Semester Exam: 60 Marks								

Prerequisites: Nil

Course description: After completing this course, students will have a clear and fundamental understanding of Communication theory. Topics range from an overview of types of modulation. Effect of noise in communication is also covered. Subject develops the understanding of students to treat the modulation in time and frequency domain.

Course Objectives:

- To provide students with basics of Analog Communication principles
- To emphasize Analog modulation and demodulation techniques.
- To emphasize Performance of communication circuits in presence of noise
- To emphasize Modern trends in communication systems and transmitter/receiver circuits.

Course Outcomes

After completing the course, students will able to:

CO1	State basic concepts in modern electronic communication	K1
CO2	Understand various modulation and demodulation techniques and noise	K2
CO3	Comprehend different types of modulations in time and frequency domain	K2
CO4	Explain effect of noise and different applications of various modulations	K2

Detailed Syllabus:

Unit 1	Amplitude Modulation										
	Introduction to communication system, Need for modulation, Frequency Division										
	Multiplexing, Amplitude Modulation, Definition, Time domain and frequency domain										
	description, single tone modulation, power relations in AM waves, Generation of AM waves,										
	Switching modulator, Detection of AM Waves; Square law detector, Envelope detector,										
	Double side band suppressed carrier modulators, time domain and frequency domain										
	description, Generation of DSBSC Waves, Balanced Modulators, Ring Modulator										
Unit 2	SSB Modulation										
	Frequency domain description, Frequency discrimination method for generation of AM SSB										
	Modulated Wave, Time domain description, Phase discrimination method for generating AM										
	SSB Modulated waves. Demodulation of SSB Waves, Vestigial side band modulation:										
	Frequency description, Generation of VSB Modulated wave, Time domain description,										
	Envelope detection of a VSB Wave pulse Carrier, Comparison of AM Techniques.										
Unit 3	Angle Modulations										
	Basic concepts, Frequency Modulation: Single tone frequency modulation, Spectrum Analysis										
	of Sinusoidal FM Wave, Narrow band FM, Wide band FM, Constant Average Power,										
	Transmission bandwidth of FM Wave - Generation of FM Waves, Direct FM, Detection of										

	FM Waves: Balanced Frequency discriminator, Zero crossing detector, Comparison of FM and AM.
Unit 4	Noise in Analog Modulation
	Definition, classification, Noise in Analog communication System, Noise in DSB and SSB
	System, Noise in AM System, Noise in Angle Modulation System, Threshold effect in Angle
	Modulation System, Pre-emphasis and de-emphasis.
Unit 5	Pulse Modulation and Radio Transmitters & Receivers
	Types of Pulse modulation, PAM (Single polarity, double polarity) PWM: Generation and
	demodulation of PWM, PPM, Generation and demodulation of PPM, Time Division
	Multiplexing. Receiver Types - Tuned radio frequency receiver, Super-heterodyne receiver,
	RF section and Characteristics - Frequency changing and tracking, Intermediate frequency,
	AGC, FM Receiver, Comparison with AM Receiver, Amplitude limiting.

Text and Reference Books

- 1. Simon Haykin, Analog and Digital Communications, John Wiley, 2005
- 2. George F. Kennedy, Electronic Communication System, Tata McGraw Hill.
- 3. F.E.Terman, Electronics and Radio Engg, Mc- Graw Hill.
- 4. R. Coolen, Electronic Communications, PHI
- 5. K. Sam Shanmugam , Analog and Digital Communication, Willey ,2005
- 6. Wayne Tomasi, Electronics Communication Systems-Fundamentals through Advanced, PHI, 5th Edition, 2009

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
Outcom											
e											
CO1	2	3									
CO2	2	2	3								2

Mapping of Course outcome with Program Outcomes

1 – High, 2 – Medium, 3 - Low

2

Teacher's Assessment: Teachers Assessment of 10 marks is based on one of the / or combination of few of following

1) Simulation

CO3

- 2) Application development
- 3) Power point presentation of case studies

2

- 4) Question & answer / Numerical solution
- 5) Study of Industry processes and its presentation
- 6) Mini projects

PO12

3

Assessment Pattern

Assessment	Knowledge Level	Tes	Tes	Teachers	End Semester
Pattern			t 2	Assessment/	Examination
Level No.				Assignment	
K1	Remember	05	05	00	10
K2	Understand	10	10	10	50
К3	Apply	00	00	00	00
K4	Analyze	00	00	00	00
K5	Evaluate	00	00	00	00
K6 Create		00	00	00	00
Total Marks	100	15	15	10	60

Assessment table

Assessment Tool	K1	K2	K2	K2
	CO1	CO2	CO3	CO4
Class Test 1 (15 Marks)	05	05	05	00
Class Test 2 (15 Marks)	00	05	05	05
Teachers Assessment (10 Marks)	00	05	00	05
ESE Assessment (60 Marks)	10	20	15	15

ET2016: Lab-Analog Communication (Professional Core)						
Teaching Scheme Examination Scheme						
Practical: 2Hrs/Week Term Work : 25 Marks						
Total Credits : 01 Practical Examination & Viva Voce: 25 Marks						

Laboratory Course Outcomes

As an outcome of completing the Laboratory course, students will able to:

CO1	Implement and realize circuits for different modulation techniques
CO2	Implement and realize circuits for different modulation techniques
CO3	Build and test the basic digital communication circuits
CO4	Write programs for generation and detection of different modulations and demodulation

List of Experiments

Sr. No.	Details
1	Implement the circuit for Amplitude Modulation and Demodulation
2	Determine modulation index with trapezoidal method
3	DSB SC Modulation and Demodulation
4	SSB SC Modulation and Demodulation
5	Diode Detector Characteristics
6	Frequency Modulation and Demodulation
7	PAM generation and Reconstruction
8	PWM and PPM: Generation and Reconstruction
9	Pre Emphasis - De Emphasis Circuits
10	AGC Characteristics

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1
Outcome												2
CO1				2	3							
CO2				1	2						3	
CO3				2	3							
CO4				2	3						3	

1 – High 2 – Medium 3 - Low

Assessment Table

Assessment Tool	S 1	S2	S 3	S2
	CO1	CO2	CO3	CO4
Term Work (25 Marks)	08	07	05	05
Practical Examination & Viva Voce (25 Marks)	08	07	05	05

Assessment	Skill Level	Term Work	Practical Examination &		
Pattern Level			viva voce		
No.					
S1	Imitation	05	10		
S2	Manipulation	15	10		
S3	Precision	05	05		
S4	Articulation	00	00		
S5	Naturalization	00	00		
Total		25	25		
			•		
Preparation (S1)		05	10		
Conduct of Export	Conduct of Experiment (S2)		10		

Preparation (S1)	05	10
Conduct of Experiment (S2)	15	10
Observation and Analysis of Results (S3)	05	05
Mini-Project / Presentation/ Viva-Voce	00	00
(\$3)		
Total	25	25

ET2017 : Engineering Mathematics IV					
Teaching Scheme	Examination Scheme				
Lectures: 4 Hrs /Week	Test 1 : 15 Marks				
Credits: 04	Test 2 : 15 Marks				
	Teachers Assessment : 10 Marks				
	End Semester Exam : 60 Marks				

Prerequisites: Knowledge of basic mathematics

Course description: This course will give exposure on vector spaces, linear mapping, correlation, regression and queuing theory. The contents are creating basis for mathematics involved in higher level and research oriented courses.

Course Objectives:

- Understand vector spaces
- Understand concepts of linear mapping
- Impart knowledge of orthogonality concepts
- Expose basics of Queuing theory

Course Outcomes

After completing the course, students will able to:

CO1	Examine a system of vectors for linear dependence and for being a basis	K2
CO2	Understand linear transformations and orthogonality	K2
CO3	Find best fit curve by using least square method and regression analysis	K2
CO4	Solve Wave equations using numerical approach	K3

Detailed Syllabus:

Unit 1	Vector Spaces						
	Introduction, Vector Spaces, Examples of vector spaces, linear combinations, Spanning						
	Sets, Subspaces, Linear spans, Row space of a matrix, Linear dependence and						
	independence, Basis and dimensions, Application to matrices, rank of matrix, Sums and						
	direct sums, coordinates Introduction to linear transformation and vector spaces						
Unit 2	Linear Mapping and Matrices						
	Introduction, Mapping, functions, Linear mapping (Linear transformations), Kernel and						
	image of linear mapping, singular and Non-singular linear mapping, Isomorphism,						
	Operations with linear mappings, Algebra A(V) of linear operators.						
	Introduction, Matrix Representation of a Linear Operator, Change of basis, Similarity,						
	Matrix and general linear mappings.						
Unit 3	Inner Product Spaces, Orthogonality						
	Introduction, Inner product spaces, example of inner product spaces, Cauchy-Schwarz						
	Inequality, Applications, Orthogonality, Orthogonal Sets and Bases, Gram-Schmidt						
	Orthogonalization Process, Orthogonal and positive definite matrices, Complex inner						
	product spaces, Normed vector spaces.						

Unit 4	Correlation and Regression & Probability theory
	Correlation and regression analysis, Linear regression, multivariable regression
	Analysis of variance, Least square curve fitting
	The notion of probability and basic properties, Random variables: Basic definition and
	properties, Transformations for random variables, Methods for generation of random
	variables
Unit 5	Numerical Solution of Partial Differential Equations
	Introduction, Laplace's equation, solution of Laplace equation by Jacobi's method and
	Gauss-Seidel method, Numerical solution of Wave equation
Text an	d Reference Books
1. I	ntroductory Methods of Numerical Analysis, S. S. Sastry, PHI Publication
2. 1	Linear Algebra, Schaum Outline Series, Seymour Lipschutz, Marc Lipson, McGraw Hill
Pub	lication
3. E	Elementary Statistical Methods, S. P. Gupta, S. Chand Publication
4. I	inear Algebra and Vector Calculus, Rajesh R. Singh, Mukul Bhatt, McGraw Hill Publication

Mapping of Course outcome with Program Outcomes

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
Outcome												
CO1	2											
CO2	2	3										
CO3	2	2	2								3	
CO4	1	2	3								3	

1 – High2 – Medium3 - Low

Teacher's Assessment: Teachers Assessment of 10 marks is based on the syllabus

Assessment Pattern

Assessment	Knowledge Level	Test 1	Test 2	Teachers	End Semester
Pattern				Assessment/	Examination
Level No.				Assignment	
K1	Remember	5	5	0	10
K2	Understand	10	10	5	40
K3	Apply	0	0	5	10
K4	Analyze	0	0	0	0
K5	Evaluate	0	0	0	0
K6	Create	0	0	0	0
Total Marks	100	15	15	10	60

Assessment table

Assessment Tool	K2	K2	K2	K3
	C01	C02	C03	CO4
Class Test 1 (15 Marks)	5	10	0	0
Class Test 1 (15 Marks)	00	5	10	0
Teachers Assessment (10 Marks)	0	3	2	5
ESE Assessment (60 Marks)	15	20	20	05